You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

train.py 4.6 kB

5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101
  1. # Copyright 2020 Huawei Technologies Co., Ltd
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. # ============================================================================
  15. """crnn training"""
  16. import os
  17. import argparse
  18. import mindspore.nn as nn
  19. from mindspore import context
  20. from mindspore.common import set_seed
  21. from mindspore.train.model import Model
  22. from mindspore.context import ParallelMode
  23. from mindspore.nn.wrap import WithLossCell
  24. from mindspore.train.callback import TimeMonitor, LossMonitor, CheckpointConfig, ModelCheckpoint
  25. from mindspore.communication.management import init, get_group_size, get_rank
  26. from src.loss import CTCLoss
  27. from src.dataset import create_dataset
  28. from src.crnn import crnn
  29. from src.crnn_for_train import TrainOneStepCellWithGradClip
  30. set_seed(1)
  31. parser = argparse.ArgumentParser(description="crnn training")
  32. parser.add_argument("--run_distribute", action='store_true', help="Run distribute, default is false.")
  33. parser.add_argument('--dataset_path', type=str, default=None, help='Dataset path, default is None')
  34. parser.add_argument('--platform', type=str, default='Ascend', choices=['Ascend'],
  35. help='Running platform, only support Ascend now. Default is Ascend.')
  36. parser.add_argument('--model', type=str, default='lowercase', help="Model type, default is lowercase")
  37. parser.add_argument('--dataset', type=str, default='synth', choices=['synth', 'ic03', 'ic13', 'svt', 'iiit5k'])
  38. parser.set_defaults(run_distribute=False)
  39. args_opt = parser.parse_args()
  40. if args_opt.model == 'lowercase':
  41. from src.config import config1 as config
  42. else:
  43. from src.config import config2 as config
  44. context.set_context(mode=context.GRAPH_MODE, device_target=args_opt.platform, save_graphs=False)
  45. if args_opt.platform == 'Ascend':
  46. device_id = int(os.getenv('DEVICE_ID'))
  47. context.set_context(device_id=device_id)
  48. if __name__ == '__main__':
  49. lr_scale = 1
  50. if args_opt.run_distribute:
  51. if args_opt.platform == 'Ascend':
  52. init()
  53. lr_scale = 1
  54. device_num = int(os.environ.get("RANK_SIZE"))
  55. rank = int(os.environ.get("RANK_ID"))
  56. else:
  57. init()
  58. lr_scale = 1
  59. device_num = get_group_size()
  60. rank = get_rank()
  61. context.reset_auto_parallel_context()
  62. context.set_auto_parallel_context(device_num=device_num,
  63. parallel_mode=ParallelMode.DATA_PARALLEL,
  64. gradients_mean=True)
  65. else:
  66. device_num = 1
  67. rank = 0
  68. max_text_length = config.max_text_length
  69. # create dataset
  70. dataset = create_dataset(name=args_opt.dataset, dataset_path=args_opt.dataset_path, batch_size=config.batch_size,
  71. num_shards=device_num, shard_id=rank, config=config)
  72. step_size = dataset.get_dataset_size()
  73. # define lr
  74. lr_init = config.learning_rate
  75. lr = nn.dynamic_lr.cosine_decay_lr(0.0, lr_init, config.epoch_size * step_size, step_size, config.epoch_size)
  76. loss = CTCLoss(max_sequence_length=config.num_step,
  77. max_label_length=max_text_length,
  78. batch_size=config.batch_size)
  79. net = crnn(config)
  80. opt = nn.SGD(params=net.trainable_params(), learning_rate=lr, momentum=config.momentum, nesterov=config.nesterov)
  81. net = WithLossCell(net, loss)
  82. net = TrainOneStepCellWithGradClip(net, opt).set_train()
  83. # define model
  84. model = Model(net)
  85. # define callbacks
  86. callbacks = [LossMonitor(), TimeMonitor(data_size=step_size)]
  87. if config.save_checkpoint and rank == 0:
  88. config_ck = CheckpointConfig(save_checkpoint_steps=config.save_checkpoint_steps,
  89. keep_checkpoint_max=config.keep_checkpoint_max)
  90. save_ckpt_path = os.path.join(config.save_checkpoint_path, 'ckpt_' + str(rank) + '/')
  91. ckpt_cb = ModelCheckpoint(prefix="crnn", directory=save_ckpt_path, config=config_ck)
  92. callbacks.append(ckpt_cb)
  93. model.train(config.epoch_size, dataset, callbacks=callbacks)