You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

test_soft_dvpp.py 5.1 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125
  1. # Copyright 2020 Huawei Technologies Co., Ltd
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. # ==============================================================================
  15. """
  16. Testing soft dvpp SoftDvppDecodeResizeJpeg and SoftDvppDecodeRandomCropResizeJpeg in DE
  17. """
  18. import mindspore.dataset as ds
  19. import mindspore.dataset.vision.c_transforms as vision
  20. from mindspore import log as logger
  21. from util import diff_mse, visualize_image
  22. DATA_DIR = ["../data/dataset/test_tf_file_3_images/train-0000-of-0001.data"]
  23. SCHEMA_DIR = "../data/dataset/test_tf_file_3_images/datasetSchema.json"
  24. def test_soft_dvpp_decode_resize_jpeg(plot=False):
  25. """
  26. Test SoftDvppDecodeResizeJpeg op
  27. """
  28. logger.info("test_random_decode_resize_op")
  29. # First dataset
  30. data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
  31. decode_op = vision.Decode()
  32. resize_op = vision.Resize((256, 512))
  33. data1 = data1.map(operations=[decode_op, resize_op], input_columns=["image"])
  34. # Second dataset
  35. data2 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
  36. soft_dvpp_decode_resize_op = vision.SoftDvppDecodeResizeJpeg((256, 512))
  37. data2 = data2.map(operations=soft_dvpp_decode_resize_op, input_columns=["image"])
  38. num_iter = 0
  39. for item1, item2 in zip(data1.create_dict_iterator(num_epochs=1, output_numpy=True),
  40. data2.create_dict_iterator(num_epochs=1, output_numpy=True)):
  41. if num_iter > 0:
  42. break
  43. image1 = item1["image"]
  44. image2 = item2["image"]
  45. mse = diff_mse(image1, image2)
  46. assert mse <= 0.02
  47. logger.info("random_crop_decode_resize_op_{}, mse: {}".format(num_iter + 1, mse))
  48. if plot:
  49. visualize_image(image1, image2, mse)
  50. num_iter += 1
  51. def test_soft_dvpp_decode_random_crop_resize_jpeg(plot=False):
  52. """
  53. Test SoftDvppDecodeRandomCropResizeJpeg op
  54. """
  55. logger.info("test_random_decode_resize_op")
  56. # First dataset
  57. data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
  58. random_crop_decode_resize_op = vision.RandomCropDecodeResize((256, 512), (1, 1), (0.5, 0.5))
  59. data1 = data1.map(operations=random_crop_decode_resize_op, input_columns=["image"])
  60. # Second dataset
  61. data2 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
  62. soft_dvpp_random_crop_decode_resize_op = vision.SoftDvppDecodeRandomCropResizeJpeg((256, 512), (1, 1), (0.5, 0.5))
  63. data2 = data2.map(operations=soft_dvpp_random_crop_decode_resize_op, input_columns=["image"])
  64. num_iter = 0
  65. for item1, item2 in zip(data1.create_dict_iterator(num_epochs=1, output_numpy=True),
  66. data2.create_dict_iterator(num_epochs=1, output_numpy=True)):
  67. if num_iter > 0:
  68. break
  69. image1 = item1["image"]
  70. image2 = item2["image"]
  71. mse = diff_mse(image1, image2)
  72. assert mse <= 0.06
  73. logger.info("random_crop_decode_resize_op_{}, mse: {}".format(num_iter + 1, mse))
  74. if plot:
  75. visualize_image(image1, image2, mse)
  76. num_iter += 1
  77. def test_soft_dvpp_decode_resize_jpeg_supplement(plot=False):
  78. """
  79. Test SoftDvppDecodeResizeJpeg op
  80. """
  81. logger.info("test_random_decode_resize_op")
  82. # First dataset
  83. data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
  84. decode_op = vision.Decode()
  85. resize_op = vision.Resize(1134)
  86. data1 = data1.map(operations=[decode_op, resize_op], input_columns=["image"])
  87. # Second dataset
  88. data2 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
  89. soft_dvpp_decode_resize_op = vision.SoftDvppDecodeResizeJpeg(1134)
  90. data2 = data2.map(operations=soft_dvpp_decode_resize_op, input_columns=["image"])
  91. num_iter = 0
  92. for item1, item2 in zip(data1.create_dict_iterator(num_epochs=1, output_numpy=True),
  93. data2.create_dict_iterator(num_epochs=1, output_numpy=True)):
  94. if num_iter > 0:
  95. break
  96. image1 = item1["image"]
  97. image2 = item2["image"]
  98. mse = diff_mse(image1, image2)
  99. assert mse <= 0.02
  100. logger.info("random_crop_decode_resize_op_{}, mse: {}".format(num_iter + 1, mse))
  101. if plot:
  102. visualize_image(image1, image2, mse)
  103. num_iter += 1
  104. if __name__ == "__main__":
  105. test_soft_dvpp_decode_resize_jpeg(plot=True)
  106. test_soft_dvpp_decode_random_crop_resize_jpeg(plot=True)
  107. test_soft_dvpp_decode_resize_jpeg_supplement(plot=True)