You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

test_project.py 6.8 kB

5 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183
  1. # Copyright 2019 Huawei Technologies Co., Ltd
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. # ==============================================================================
  15. import numpy as np
  16. from util import save_and_check_tuple
  17. import mindspore.dataset as ds
  18. import mindspore.dataset.transforms.c_transforms as C
  19. from mindspore.common import dtype as mstype
  20. DATA_DIR_TF = ["../data/dataset/testTFTestAllTypes/test.data"]
  21. SCHEMA_DIR_TF = "../data/dataset/testTFTestAllTypes/datasetSchema.json"
  22. GENERATE_GOLDEN = False
  23. def test_case_project_single_column():
  24. columns = ["col_sint32"]
  25. parameters = {"params": {'columns': columns}}
  26. data1 = ds.TFRecordDataset(DATA_DIR_TF, SCHEMA_DIR_TF, shuffle=False)
  27. data1 = data1.project(columns=columns)
  28. filename = "project_single_column_result.npz"
  29. save_and_check_tuple(data1, parameters, filename, generate_golden=GENERATE_GOLDEN)
  30. def test_case_project_multiple_columns_in_order():
  31. columns = ["col_sint16", "col_float", "col_2d"]
  32. parameters = {"params": {'columns': columns}}
  33. data1 = ds.TFRecordDataset(DATA_DIR_TF, SCHEMA_DIR_TF, shuffle=False)
  34. data1 = data1.project(columns=columns)
  35. filename = "project_multiple_columns_in_order_result.npz"
  36. save_and_check_tuple(data1, parameters, filename, generate_golden=GENERATE_GOLDEN)
  37. def test_case_project_multiple_columns_out_of_order():
  38. columns = ["col_3d", "col_sint64", "col_2d"]
  39. parameters = {"params": {'columns': columns}}
  40. data1 = ds.TFRecordDataset(DATA_DIR_TF, SCHEMA_DIR_TF, shuffle=False)
  41. data1 = data1.project(columns=columns)
  42. filename = "project_multiple_columns_out_of_order_result.npz"
  43. save_and_check_tuple(data1, parameters, filename, generate_golden=GENERATE_GOLDEN)
  44. def test_case_project_map():
  45. columns = ["col_3d", "col_sint64", "col_2d"]
  46. parameters = {"params": {'columns': columns}}
  47. data1 = ds.TFRecordDataset(DATA_DIR_TF, SCHEMA_DIR_TF, shuffle=False)
  48. data1 = data1.project(columns=columns)
  49. type_cast_op = C.TypeCast(mstype.int64)
  50. data1 = data1.map(operations=type_cast_op, input_columns=["col_3d"])
  51. filename = "project_map_after_result.npz"
  52. save_and_check_tuple(data1, parameters, filename, generate_golden=GENERATE_GOLDEN)
  53. def test_case_map_project():
  54. columns = ["col_3d", "col_sint64", "col_2d"]
  55. parameters = {"params": {'columns': columns}}
  56. data1 = ds.TFRecordDataset(DATA_DIR_TF, SCHEMA_DIR_TF, shuffle=False)
  57. type_cast_op = C.TypeCast(mstype.int64)
  58. data1 = data1.map(operations=type_cast_op, input_columns=["col_sint64"])
  59. data1 = data1.project(columns=columns)
  60. filename = "project_map_before_result.npz"
  61. save_and_check_tuple(data1, parameters, filename, generate_golden=GENERATE_GOLDEN)
  62. def test_case_project_between_maps():
  63. columns = ["col_3d", "col_sint64", "col_2d"]
  64. parameters = {"params": {'columns': columns}}
  65. data1 = ds.TFRecordDataset(DATA_DIR_TF, SCHEMA_DIR_TF, shuffle=False)
  66. type_cast_op = C.TypeCast(mstype.int64)
  67. data1 = data1.map(operations=type_cast_op, input_columns=["col_3d"])
  68. data1 = data1.map(operations=type_cast_op, input_columns=["col_3d"])
  69. data1 = data1.map(operations=type_cast_op, input_columns=["col_3d"])
  70. data1 = data1.map(operations=type_cast_op, input_columns=["col_3d"])
  71. data1 = data1.project(columns=columns)
  72. data1 = data1.map(operations=type_cast_op, input_columns=["col_3d"])
  73. data1 = data1.map(operations=type_cast_op, input_columns=["col_3d"])
  74. data1 = data1.map(operations=type_cast_op, input_columns=["col_3d"])
  75. data1 = data1.map(operations=type_cast_op, input_columns=["col_3d"])
  76. data1 = data1.map(operations=type_cast_op, input_columns=["col_3d"])
  77. filename = "project_between_maps_result.npz"
  78. save_and_check_tuple(data1, parameters, filename, generate_golden=GENERATE_GOLDEN)
  79. def test_case_project_repeat():
  80. columns = ["col_3d", "col_sint64", "col_2d"]
  81. parameters = {"params": {'columns': columns}}
  82. data1 = ds.TFRecordDataset(DATA_DIR_TF, SCHEMA_DIR_TF, shuffle=False)
  83. data1 = data1.project(columns=columns)
  84. repeat_count = 3
  85. data1 = data1.repeat(repeat_count)
  86. filename = "project_before_repeat_result.npz"
  87. save_and_check_tuple(data1, parameters, filename, generate_golden=GENERATE_GOLDEN)
  88. def test_case_repeat_project():
  89. columns = ["col_3d", "col_sint64", "col_2d"]
  90. parameters = {"params": {'columns': columns}}
  91. data1 = ds.TFRecordDataset(DATA_DIR_TF, SCHEMA_DIR_TF, shuffle=False)
  92. repeat_count = 3
  93. data1 = data1.repeat(repeat_count)
  94. data1 = data1.project(columns=columns)
  95. filename = "project_after_repeat_result.npz"
  96. save_and_check_tuple(data1, parameters, filename, generate_golden=GENERATE_GOLDEN)
  97. def test_case_map_project_map_project():
  98. columns = ["col_3d", "col_sint64", "col_2d"]
  99. parameters = {"params": {'columns': columns}}
  100. data1 = ds.TFRecordDataset(DATA_DIR_TF, SCHEMA_DIR_TF, shuffle=False)
  101. type_cast_op = C.TypeCast(mstype.int64)
  102. data1 = data1.map(operations=type_cast_op, input_columns=["col_sint64"])
  103. data1 = data1.project(columns=columns)
  104. data1 = data1.map(operations=type_cast_op, input_columns=["col_2d"])
  105. data1 = data1.project(columns=columns)
  106. filename = "project_alternate_parallel_inline_result.npz"
  107. save_and_check_tuple(data1, parameters, filename, generate_golden=GENERATE_GOLDEN)
  108. def test_column_order():
  109. """test the output dict has maintained an insertion order."""
  110. def gen_3_cols(num):
  111. for i in range(num):
  112. yield (np.array([i * 3]), np.array([i * 3 + 1]), np.array([i * 3 + 2]))
  113. def test_config(num, col_order):
  114. dst = ds.GeneratorDataset((lambda: gen_3_cols(num)), ["col1", "col2", "col3"]).batch(batch_size=num)
  115. dst = dst.project(col_order)
  116. res = dict()
  117. for item in dst.create_dict_iterator(num_epochs=1):
  118. res = item
  119. return res
  120. assert list(test_config(1, ["col3", "col2", "col1"]).keys()) == ["col3", "col2", "col1"]
  121. assert list(test_config(2, ["col1", "col2", "col3"]).keys()) == ["col1", "col2", "col3"]
  122. assert list(test_config(3, ["col2", "col3", "col1"]).keys()) == ["col2", "col3", "col1"]
  123. if __name__ == '__main__':
  124. test_column_order()