You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

test_fuse.py 2.4 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475
  1. # Copyright 2020 Huawei Technologies Co., Ltd
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. # ============================================================================
  15. import numpy as np
  16. import pytest
  17. import mindspore.context as context
  18. from mindspore import Tensor
  19. from mindspore.nn import Cell
  20. import mindspore.ops.operations as P
  21. from mindspore.ops.operations import _grad_ops as G
  22. class Net(Cell):
  23. def __init__(self):
  24. super(Net, self).__init__()
  25. self.add = P.TensorAdd()
  26. self.sub = P.Sub()
  27. self.mul = P.Mul()
  28. self.sqrt_grad = G.SqrtGrad()
  29. def construct(self, x, y, z):
  30. sub_res = self.sub(x, y)
  31. mul_res = self.mul(sub_res, x)
  32. sqrt_grad_res = self.sqrt_grad(mul_res, z)
  33. square_res = P.Square()(sqrt_grad_res)
  34. add_res = self.add(sqrt_grad_res, square_res)
  35. add1_res = self.add(add_res, add_res)
  36. return self.add(add1_res, add1_res)
  37. def get_output(i0, i1, i2, enable_graph_kernel=False):
  38. if enable_graph_kernel:
  39. context.set_context(enable_graph_kernel=True)
  40. net = Net()
  41. output = net(i0, i1, i2)
  42. return output
  43. def test_basic():
  44. i0 = Tensor(np.random.normal(0, 1, [2, 3, 4, 3]).astype(np.float32))
  45. i1 = Tensor(np.random.normal(0, 1, [2, 3, 4, 3]).astype(np.float32))
  46. i2 = Tensor(np.random.normal(0, 1, [2, 3, 4, 3]).astype(np.float32))
  47. expect = get_output(i0, i1, i2, False)
  48. output = get_output(i0, i1, i2, True)
  49. expect_np = expect.asnumpy().copy()
  50. output_np = output.asnumpy().copy()
  51. assert np.allclose(expect_np, output_np, 1.e-4, 1.e-7)
  52. @pytest.mark.level0
  53. @pytest.mark.platform_x86_gpu_training
  54. @pytest.mark.env_onecard
  55. def test_basic_gpu():
  56. context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
  57. test_basic()
  58. def test_basic_ascend():
  59. context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
  60. test_basic()