You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

image_process_test.cc 47 kB

5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281
  1. /**
  2. * Copyright 2020 Huawei Technologies Co., Ltd
  3. *
  4. * Licensed under the Apache License, Version 2.0 (the "License");
  5. * you may not use this file except in compliance with the License.
  6. * You may obtain a copy of the License at
  7. *
  8. * http://www.apache.org/licenses/LICENSE-2.0
  9. *
  10. * Unless required by applicable law or agreed to in writing, software
  11. * distributed under the License is distributed on an "AS IS" BASIS,
  12. * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  13. * See the License for the specific language governing permissions and
  14. * limitations under the License.
  15. */
  16. #include "common/common.h"
  17. #include "lite_cv/lite_mat.h"
  18. #include "lite_cv/image_process.h"
  19. #include <opencv2/opencv.hpp>
  20. #include <opencv2/imgproc/types_c.h>
  21. #include <fstream>
  22. using namespace mindspore::dataset;
  23. class MindDataImageProcess : public UT::Common {
  24. public:
  25. MindDataImageProcess() {}
  26. void SetUp() {}
  27. };
  28. void CompareMat(cv::Mat cv_mat, LiteMat lite_mat) {
  29. int cv_h = cv_mat.rows;
  30. int cv_w = cv_mat.cols;
  31. int cv_c = cv_mat.channels();
  32. int lite_h = lite_mat.height_;
  33. int lite_w = lite_mat.width_;
  34. int lite_c = lite_mat.channel_;
  35. ASSERT_TRUE(cv_h == lite_h);
  36. ASSERT_TRUE(cv_w == lite_w);
  37. ASSERT_TRUE(cv_c == lite_c);
  38. }
  39. void Lite3CImageProcess(LiteMat &lite_mat_bgr, LiteMat &lite_norm_mat_cut) {
  40. bool ret;
  41. LiteMat lite_mat_resize;
  42. ret = ResizeBilinear(lite_mat_bgr, lite_mat_resize, 256, 256);
  43. ASSERT_TRUE(ret == true);
  44. LiteMat lite_mat_convert_float;
  45. ret = ConvertTo(lite_mat_resize, lite_mat_convert_float, 1.0);
  46. ASSERT_TRUE(ret == true);
  47. LiteMat lite_mat_crop;
  48. ret = Crop(lite_mat_convert_float, lite_mat_crop, 16, 16, 224, 224);
  49. ASSERT_TRUE(ret == true);
  50. std::vector<float> means = {0.485, 0.456, 0.406};
  51. std::vector<float> stds = {0.229, 0.224, 0.225};
  52. SubStractMeanNormalize(lite_mat_crop, lite_norm_mat_cut, means, stds);
  53. return;
  54. }
  55. cv::Mat cv3CImageProcess(cv::Mat &image) {
  56. cv::Mat resize_256_image;
  57. cv::resize(image, resize_256_image, cv::Size(256, 256), CV_INTER_LINEAR);
  58. cv::Mat float_256_image;
  59. resize_256_image.convertTo(float_256_image, CV_32FC3);
  60. cv::Mat roi_224_image;
  61. cv::Rect roi;
  62. roi.x = 16;
  63. roi.y = 16;
  64. roi.width = 224;
  65. roi.height = 224;
  66. float_256_image(roi).copyTo(roi_224_image);
  67. float meanR = 0.485;
  68. float meanG = 0.456;
  69. float meanB = 0.406;
  70. float varR = 0.229;
  71. float varG = 0.224;
  72. float varB = 0.225;
  73. cv::Scalar mean = cv::Scalar(meanR, meanG, meanB);
  74. cv::Scalar var = cv::Scalar(varR, varG, varB);
  75. cv::Mat imgMean(roi_224_image.size(), CV_32FC3, mean);
  76. cv::Mat imgVar(roi_224_image.size(), CV_32FC3, var);
  77. cv::Mat imgR1 = roi_224_image - imgMean;
  78. cv::Mat imgR2 = imgR1 / imgVar;
  79. return imgR2;
  80. }
  81. void AccuracyComparison(const std::vector<std::vector<double>> &expect, LiteMat &value) {
  82. for (int i = 0; i < expect.size(); i++) {
  83. for (int j = 0; j < expect[0].size(); j++) {
  84. double middle = std::fabs(expect[i][j] - value.ptr<double>(i)[j]);
  85. ASSERT_TRUE(middle <= 0.005);
  86. }
  87. }
  88. }
  89. TEST_F(MindDataImageProcess, testRGB) {
  90. std::string filename = "data/dataset/apple.jpg";
  91. cv::Mat image = cv::imread(filename, cv::ImreadModes::IMREAD_COLOR);
  92. cv::Mat rgba_mat;
  93. cv::cvtColor(image, rgba_mat, CV_BGR2RGB);
  94. bool ret = false;
  95. LiteMat lite_mat_rgb;
  96. ret = InitFromPixel(rgba_mat.data, LPixelType::RGB, LDataType::UINT8, rgba_mat.cols, rgba_mat.rows, lite_mat_rgb);
  97. ASSERT_TRUE(ret == true);
  98. cv::Mat dst_image(lite_mat_rgb.height_, lite_mat_rgb.width_, CV_8UC3, lite_mat_rgb.data_ptr_);
  99. }
  100. TEST_F(MindDataImageProcess, testLoadByMemPtr) {
  101. std::string filename = "data/dataset/apple.jpg";
  102. cv::Mat image = cv::imread(filename, cv::ImreadModes::IMREAD_COLOR);
  103. cv::Mat rgba_mat;
  104. cv::cvtColor(image, rgba_mat, CV_BGR2RGB);
  105. bool ret = false;
  106. int width = rgba_mat.cols;
  107. int height = rgba_mat.rows;
  108. uchar *p_rgb = (uchar *)malloc(width * height * 3 * sizeof(uchar));
  109. for (int i = 0; i < height; i++) {
  110. const uchar *current = rgba_mat.ptr<uchar>(i);
  111. for (int j = 0; j < width; j++) {
  112. p_rgb[i * width * 3 + 3 * j + 0] = current[3 * j + 0];
  113. p_rgb[i * width * 3 + 3 * j + 1] = current[3 * j + 1];
  114. p_rgb[i * width * 3 + 3 * j + 2] = current[3 * j + 2];
  115. }
  116. }
  117. LiteMat lite_mat_rgb(width, height, 3, (void *)p_rgb, LDataType::UINT8);
  118. LiteMat lite_mat_resize;
  119. ret = ResizeBilinear(lite_mat_rgb, lite_mat_resize, 256, 256);
  120. ASSERT_TRUE(ret == true);
  121. LiteMat lite_mat_convert_float;
  122. ret = ConvertTo(lite_mat_resize, lite_mat_convert_float, 1.0);
  123. ASSERT_TRUE(ret == true);
  124. LiteMat lite_mat_crop;
  125. ret = Crop(lite_mat_convert_float, lite_mat_crop, 16, 16, 224, 224);
  126. ASSERT_TRUE(ret == true);
  127. std::vector<float> means = {0.485, 0.456, 0.406};
  128. std::vector<float> stds = {0.229, 0.224, 0.225};
  129. LiteMat lite_norm_mat_cut;
  130. ret = SubStractMeanNormalize(lite_mat_crop, lite_norm_mat_cut, means, stds);
  131. int pad_width = lite_norm_mat_cut.width_ + 20;
  132. int pad_height = lite_norm_mat_cut.height_ + 20;
  133. float *p_rgb_pad = (float *)malloc(pad_width * pad_height * 3 * sizeof(float));
  134. LiteMat makeborder(pad_width, pad_height, 3, (void *)p_rgb_pad, LDataType::FLOAT32);
  135. ret = Pad(lite_norm_mat_cut, makeborder, 10, 30, 40, 10, PaddBorderType::PADD_BORDER_CONSTANT, 255, 255, 255);
  136. cv::Mat dst_image(pad_height, pad_width, CV_8UC3, p_rgb_pad);
  137. free(p_rgb);
  138. free(p_rgb_pad);
  139. }
  140. TEST_F(MindDataImageProcess, test3C) {
  141. std::string filename = "data/dataset/apple.jpg";
  142. cv::Mat image = cv::imread(filename, cv::ImreadModes::IMREAD_COLOR);
  143. cv::Mat cv_image = cv3CImageProcess(image);
  144. // convert to RGBA for Android bitmap(rgba)
  145. cv::Mat rgba_mat;
  146. cv::cvtColor(image, rgba_mat, CV_BGR2RGBA);
  147. bool ret = false;
  148. LiteMat lite_mat_bgr;
  149. ret =
  150. InitFromPixel(rgba_mat.data, LPixelType::RGBA2BGR, LDataType::UINT8, rgba_mat.cols, rgba_mat.rows, lite_mat_bgr);
  151. ASSERT_TRUE(ret == true);
  152. LiteMat lite_norm_mat_cut;
  153. Lite3CImageProcess(lite_mat_bgr, lite_norm_mat_cut);
  154. cv::Mat dst_image(lite_norm_mat_cut.height_, lite_norm_mat_cut.width_, CV_32FC3, lite_norm_mat_cut.data_ptr_);
  155. CompareMat(cv_image, lite_norm_mat_cut);
  156. }
  157. bool ReadYUV(const char *filename, int w, int h, uint8_t **data) {
  158. FILE *f = fopen(filename, "rb");
  159. if (f == nullptr) {
  160. return false;
  161. }
  162. fseek(f, 0, SEEK_END);
  163. int size = ftell(f);
  164. int expect_size = w * h + 2 * ((w + 1) / 2) * ((h + 1) / 2);
  165. if (size != expect_size) {
  166. fclose(f);
  167. return false;
  168. }
  169. fseek(f, 0, SEEK_SET);
  170. *data = (uint8_t *)malloc(size);
  171. size_t re = fread(*data, 1, size, f);
  172. if (re != size) {
  173. fclose(f);
  174. return false;
  175. }
  176. fclose(f);
  177. return true;
  178. }
  179. TEST_F(MindDataImageProcess, testNV21ToBGR) {
  180. // ffmpeg -i ./data/dataset/apple.jpg -s 1024*800 -pix_fmt nv21 ./data/dataset/yuv/test_nv21.yuv
  181. const char *filename = "data/dataset/yuv/test_nv21.yuv";
  182. int w = 1024;
  183. int h = 800;
  184. uint8_t *yuv_data = nullptr;
  185. bool ret = ReadYUV(filename, w, h, &yuv_data);
  186. ASSERT_TRUE(ret == true);
  187. cv::Mat yuvimg(h * 3 / 2, w, CV_8UC1);
  188. memcpy(yuvimg.data, yuv_data, w * h * 3 / 2);
  189. cv::Mat rgbimage;
  190. cv::cvtColor(yuvimg, rgbimage, cv::COLOR_YUV2BGR_NV21);
  191. LiteMat lite_mat_bgr;
  192. ret = InitFromPixel(yuv_data, LPixelType::NV212BGR, LDataType::UINT8, w, h, lite_mat_bgr);
  193. ASSERT_TRUE(ret == true);
  194. cv::Mat dst_image(lite_mat_bgr.height_, lite_mat_bgr.width_, CV_8UC3, lite_mat_bgr.data_ptr_);
  195. }
  196. TEST_F(MindDataImageProcess, testNV12ToBGR) {
  197. // ffmpeg -i ./data/dataset/apple.jpg -s 1024*800 -pix_fmt nv12 ./data/dataset/yuv/test_nv12.yuv
  198. const char *filename = "data/dataset/yuv/test_nv12.yuv";
  199. int w = 1024;
  200. int h = 800;
  201. uint8_t *yuv_data = nullptr;
  202. bool ret = ReadYUV(filename, w, h, &yuv_data);
  203. ASSERT_TRUE(ret == true);
  204. cv::Mat yuvimg(h * 3 / 2, w, CV_8UC1);
  205. memcpy(yuvimg.data, yuv_data, w * h * 3 / 2);
  206. cv::Mat rgbimage;
  207. cv::cvtColor(yuvimg, rgbimage, cv::COLOR_YUV2BGR_NV12);
  208. LiteMat lite_mat_bgr;
  209. ret = InitFromPixel(yuv_data, LPixelType::NV122BGR, LDataType::UINT8, w, h, lite_mat_bgr);
  210. ASSERT_TRUE(ret == true);
  211. cv::Mat dst_image(lite_mat_bgr.height_, lite_mat_bgr.width_, CV_8UC3, lite_mat_bgr.data_ptr_);
  212. }
  213. TEST_F(MindDataImageProcess, testExtractChannel) {
  214. std::string filename = "data/dataset/apple.jpg";
  215. cv::Mat src_image = cv::imread(filename, cv::ImreadModes::IMREAD_COLOR);
  216. cv::Mat dst_image;
  217. cv::extractChannel(src_image, dst_image, 2);
  218. // convert to RGBA for Android bitmap(rgba)
  219. cv::Mat rgba_mat;
  220. cv::cvtColor(src_image, rgba_mat, CV_BGR2RGBA);
  221. bool ret = false;
  222. LiteMat lite_mat_bgr;
  223. ret =
  224. InitFromPixel(rgba_mat.data, LPixelType::RGBA2BGR, LDataType::UINT8, rgba_mat.cols, rgba_mat.rows, lite_mat_bgr);
  225. ASSERT_TRUE(ret == true);
  226. LiteMat lite_B;
  227. ret = ExtractChannel(lite_mat_bgr, lite_B, 0);
  228. ASSERT_TRUE(ret == true);
  229. LiteMat lite_R;
  230. ret = ExtractChannel(lite_mat_bgr, lite_R, 2);
  231. ASSERT_TRUE(ret == true);
  232. cv::Mat dst_imageR(lite_R.height_, lite_R.width_, CV_8UC1, lite_R.data_ptr_);
  233. // cv::imwrite("./test_lite_r.jpg", dst_imageR);
  234. }
  235. TEST_F(MindDataImageProcess, testSplit) {
  236. std::string filename = "data/dataset/apple.jpg";
  237. cv::Mat src_image = cv::imread(filename, cv::ImreadModes::IMREAD_COLOR);
  238. std::vector<cv::Mat> dst_images;
  239. cv::split(src_image, dst_images);
  240. // convert to RGBA for Android bitmap(rgba)
  241. cv::Mat rgba_mat;
  242. cv::cvtColor(src_image, rgba_mat, CV_BGR2RGBA);
  243. bool ret = false;
  244. LiteMat lite_mat_bgr;
  245. ret =
  246. InitFromPixel(rgba_mat.data, LPixelType::RGBA2BGR, LDataType::UINT8, rgba_mat.cols, rgba_mat.rows, lite_mat_bgr);
  247. ASSERT_TRUE(ret == true);
  248. std::vector<LiteMat> lite_all;
  249. ret = Split(lite_mat_bgr, lite_all);
  250. ASSERT_TRUE(ret == true);
  251. ASSERT_TRUE(lite_all.size() == 3);
  252. LiteMat lite_r = lite_all[2];
  253. cv::Mat dst_imageR(lite_r.height_, lite_r.width_, CV_8UC1, lite_r.data_ptr_);
  254. }
  255. TEST_F(MindDataImageProcess, testMerge) {
  256. std::string filename = "data/dataset/apple.jpg";
  257. cv::Mat src_image = cv::imread(filename, cv::ImreadModes::IMREAD_COLOR);
  258. std::vector<cv::Mat> dst_images;
  259. cv::split(src_image, dst_images);
  260. // convert to RGBA for Android bitmap(rgba)
  261. cv::Mat rgba_mat;
  262. cv::cvtColor(src_image, rgba_mat, CV_BGR2RGBA);
  263. bool ret = false;
  264. LiteMat lite_mat_bgr;
  265. ret =
  266. InitFromPixel(rgba_mat.data, LPixelType::RGBA2BGR, LDataType::UINT8, rgba_mat.cols, rgba_mat.rows, lite_mat_bgr);
  267. ASSERT_TRUE(ret == true);
  268. std::vector<LiteMat> lite_all;
  269. ret = Split(lite_mat_bgr, lite_all);
  270. ASSERT_TRUE(ret == true);
  271. ASSERT_TRUE(lite_all.size() == 3);
  272. LiteMat lite_r = lite_all[2];
  273. cv::Mat dst_imageR(lite_r.height_, lite_r.width_, CV_8UC1, lite_r.data_ptr_);
  274. LiteMat merge_mat;
  275. EXPECT_TRUE(Merge(lite_all, merge_mat));
  276. EXPECT_EQ(merge_mat.height_, lite_mat_bgr.height_);
  277. EXPECT_EQ(merge_mat.width_, lite_mat_bgr.width_);
  278. EXPECT_EQ(merge_mat.channel_, lite_mat_bgr.channel_);
  279. }
  280. void Lite1CImageProcess(LiteMat &lite_mat_bgr, LiteMat &lite_norm_mat_cut) {
  281. LiteMat lite_mat_resize;
  282. int ret = ResizeBilinear(lite_mat_bgr, lite_mat_resize, 256, 256);
  283. ASSERT_TRUE(ret == true);
  284. LiteMat lite_mat_convert_float;
  285. ret = ConvertTo(lite_mat_resize, lite_mat_convert_float);
  286. ASSERT_TRUE(ret == true);
  287. LiteMat lite_mat_cut;
  288. ret = Crop(lite_mat_convert_float, lite_mat_cut, 16, 16, 224, 224);
  289. ASSERT_TRUE(ret == true);
  290. std::vector<float> means = {0.485};
  291. std::vector<float> stds = {0.229};
  292. ret = SubStractMeanNormalize(lite_mat_cut, lite_norm_mat_cut, means, stds);
  293. ASSERT_TRUE(ret == true);
  294. return;
  295. }
  296. cv::Mat cv1CImageProcess(cv::Mat &image) {
  297. cv::Mat gray_image;
  298. cv::cvtColor(image, gray_image, CV_BGR2GRAY);
  299. cv::Mat resize_256_image;
  300. cv::resize(gray_image, resize_256_image, cv::Size(256, 256), CV_INTER_LINEAR);
  301. cv::Mat float_256_image;
  302. resize_256_image.convertTo(float_256_image, CV_32FC3);
  303. cv::Mat roi_224_image;
  304. cv::Rect roi;
  305. roi.x = 16;
  306. roi.y = 16;
  307. roi.width = 224;
  308. roi.height = 224;
  309. float_256_image(roi).copyTo(roi_224_image);
  310. float meanR = 0.485;
  311. float varR = 0.229;
  312. cv::Scalar mean = cv::Scalar(meanR);
  313. cv::Scalar var = cv::Scalar(varR);
  314. cv::Mat imgMean(roi_224_image.size(), CV_32FC1, mean);
  315. cv::Mat imgVar(roi_224_image.size(), CV_32FC1, var);
  316. cv::Mat imgR1 = roi_224_image - imgMean;
  317. cv::Mat imgR2 = imgR1 / imgVar;
  318. return imgR2;
  319. }
  320. TEST_F(MindDataImageProcess, test1C) {
  321. std::string filename = "data/dataset/apple.jpg";
  322. cv::Mat image = cv::imread(filename, cv::ImreadModes::IMREAD_COLOR);
  323. cv::Mat cv_image = cv1CImageProcess(image);
  324. // convert to RGBA for Android bitmap(rgba)
  325. cv::Mat rgba_mat;
  326. cv::cvtColor(image, rgba_mat, CV_BGR2RGBA);
  327. LiteMat lite_mat_bgr;
  328. bool ret =
  329. InitFromPixel(rgba_mat.data, LPixelType::RGBA2GRAY, LDataType::UINT8, rgba_mat.cols, rgba_mat.rows, lite_mat_bgr);
  330. ASSERT_TRUE(ret == true);
  331. LiteMat lite_norm_mat_cut;
  332. Lite1CImageProcess(lite_mat_bgr, lite_norm_mat_cut);
  333. cv::Mat dst_image(lite_norm_mat_cut.height_, lite_norm_mat_cut.width_, CV_32FC1, lite_norm_mat_cut.data_ptr_);
  334. CompareMat(cv_image, lite_norm_mat_cut);
  335. }
  336. TEST_F(MindDataImageProcess, TestPadd) {
  337. std::string filename = "data/dataset/apple.jpg";
  338. cv::Mat image = cv::imread(filename, cv::ImreadModes::IMREAD_COLOR);
  339. int left = 10;
  340. int right = 20;
  341. int top = 30;
  342. int bottom = 40;
  343. cv::Mat b_image;
  344. cv::Scalar color = cv::Scalar(255, 255, 255);
  345. cv::copyMakeBorder(image, b_image, top, bottom, left, right, cv::BORDER_CONSTANT, color);
  346. cv::Mat rgba_mat;
  347. cv::cvtColor(image, rgba_mat, CV_BGR2RGBA);
  348. LiteMat lite_mat_bgr;
  349. bool ret =
  350. InitFromPixel(rgba_mat.data, LPixelType::RGBA2BGR, LDataType::UINT8, rgba_mat.cols, rgba_mat.rows, lite_mat_bgr);
  351. ASSERT_TRUE(ret == true);
  352. ASSERT_TRUE(ret == true);
  353. LiteMat makeborder;
  354. ret = Pad(lite_mat_bgr, makeborder, top, bottom, left, right, PaddBorderType::PADD_BORDER_CONSTANT, 255, 255, 255);
  355. ASSERT_TRUE(ret == true);
  356. size_t total_size = makeborder.height_ * makeborder.width_ * makeborder.channel_;
  357. double distance = 0.0f;
  358. for (size_t i = 0; i < total_size; i++) {
  359. distance += pow((uint8_t)b_image.data[i] - ((uint8_t *)makeborder)[i], 2);
  360. }
  361. distance = sqrt(distance / total_size);
  362. EXPECT_EQ(distance, 0.0f);
  363. }
  364. TEST_F(MindDataImageProcess, TestPadZero) {
  365. std::string filename = "data/dataset/apple.jpg";
  366. cv::Mat image = cv::imread(filename, cv::ImreadModes::IMREAD_COLOR);
  367. int left = 0;
  368. int right = 0;
  369. int top = 0;
  370. int bottom = 0;
  371. cv::Mat b_image;
  372. cv::Scalar color = cv::Scalar(255, 255, 255);
  373. cv::copyMakeBorder(image, b_image, top, bottom, left, right, cv::BORDER_CONSTANT, color);
  374. cv::Mat rgba_mat;
  375. cv::cvtColor(image, rgba_mat, CV_BGR2RGBA);
  376. LiteMat lite_mat_bgr;
  377. bool ret =
  378. InitFromPixel(rgba_mat.data, LPixelType::RGBA2BGR, LDataType::UINT8, rgba_mat.cols, rgba_mat.rows, lite_mat_bgr);
  379. ASSERT_TRUE(ret == true);
  380. ASSERT_TRUE(ret == true);
  381. LiteMat makeborder;
  382. ret = Pad(lite_mat_bgr, makeborder, top, bottom, left, right, PaddBorderType::PADD_BORDER_CONSTANT, 255, 255, 255);
  383. ASSERT_TRUE(ret == true);
  384. size_t total_size = makeborder.height_ * makeborder.width_ * makeborder.channel_;
  385. double distance = 0.0f;
  386. for (size_t i = 0; i < total_size; i++) {
  387. distance += pow((uint8_t)b_image.data[i] - ((uint8_t *)makeborder)[i], 2);
  388. }
  389. distance = sqrt(distance / total_size);
  390. EXPECT_EQ(distance, 0.0f);
  391. }
  392. TEST_F(MindDataImageProcess, TestGetDefaultBoxes) {
  393. std::string benchmark = "data/dataset/testLite/default_boxes.bin";
  394. BoxesConfig config;
  395. config.img_shape = {300, 300};
  396. config.num_default = {3, 6, 6, 6, 6, 6};
  397. config.feature_size = {19, 10, 5, 3, 2, 1};
  398. config.min_scale = 0.2;
  399. config.max_scale = 0.95;
  400. config.aspect_rations = {{2}, {2, 3}, {2, 3}, {2, 3}, {2, 3}, {2, 3}};
  401. config.steps = {16, 32, 64, 100, 150, 300};
  402. config.prior_scaling = {0.1, 0.2};
  403. int rows = 1917;
  404. int cols = 4;
  405. std::vector<double> benchmark_boxes(rows * cols);
  406. std::ifstream in(benchmark, std::ios::in | std::ios::binary);
  407. in.read(reinterpret_cast<char *>(benchmark_boxes.data()), benchmark_boxes.size() * sizeof(double));
  408. in.close();
  409. std::vector<std::vector<float>> default_boxes = GetDefaultBoxes(config);
  410. EXPECT_EQ(default_boxes.size(), rows);
  411. EXPECT_EQ(default_boxes[0].size(), cols);
  412. double distance = 0.0f;
  413. for (int i = 0; i < rows; i++) {
  414. for (int j = 0; j < cols; j++) {
  415. distance += pow(default_boxes[i][j] - benchmark_boxes[i * cols + j], 2);
  416. }
  417. }
  418. distance = sqrt(distance);
  419. EXPECT_LT(distance, 1e-5);
  420. }
  421. TEST_F(MindDataImageProcess, TestApplyNms) {
  422. std::vector<std::vector<float>> all_boxes = {{1, 1, 2, 2}, {3, 3, 4, 4}, {5, 5, 6, 6}, {5, 5, 6, 6}};
  423. std::vector<float> all_scores = {0.6, 0.5, 0.4, 0.9};
  424. std::vector<int> keep = ApplyNms(all_boxes, all_scores, 0.5, 10);
  425. ASSERT_TRUE(keep[0] == 3);
  426. ASSERT_TRUE(keep[1] == 0);
  427. ASSERT_TRUE(keep[2] == 1);
  428. }
  429. TEST_F(MindDataImageProcess, TestAffineInput) {
  430. LiteMat src(3, 3);
  431. LiteMat dst;
  432. double M[6] = {1};
  433. EXPECT_FALSE(Affine(src, dst, M, {}, UINT8_C1(0)));
  434. EXPECT_FALSE(Affine(src, dst, M, {3}, UINT8_C1(0)));
  435. EXPECT_FALSE(Affine(src, dst, M, {0, 0}, UINT8_C1(0)));
  436. }
  437. TEST_F(MindDataImageProcess, TestAffine) {
  438. // The input matrix
  439. // 0 0 1 0 0
  440. // 0 0 1 0 0
  441. // 2 2 3 2 2
  442. // 0 0 1 0 0
  443. // 0 0 1 0 0
  444. size_t rows = 5;
  445. size_t cols = 5;
  446. LiteMat src(rows, cols);
  447. for (size_t i = 0; i < rows; i++) {
  448. for (size_t j = 0; j < cols; j++) {
  449. if (i == 2 && j == 2) {
  450. static_cast<UINT8_C1 *>(src.data_ptr_)[i * cols + j] = 3;
  451. } else if (i == 2) {
  452. static_cast<UINT8_C1 *>(src.data_ptr_)[i * cols + j] = 2;
  453. } else if (j == 2) {
  454. static_cast<UINT8_C1 *>(src.data_ptr_)[i * cols + j] = 1;
  455. } else {
  456. static_cast<UINT8_C1 *>(src.data_ptr_)[i * cols + j] = 0;
  457. }
  458. }
  459. }
  460. // Expect output matrix
  461. // 0 0 2 0 0
  462. // 0 0 2 0 0
  463. // 1 1 3 1 1
  464. // 0 0 2 0 0
  465. // 0 0 2 0 0
  466. LiteMat expect(rows, cols);
  467. for (size_t i = 0; i < rows; i++) {
  468. for (size_t j = 0; j < cols; j++) {
  469. if (i == 2 && j == 2) {
  470. static_cast<UINT8_C1 *>(expect.data_ptr_)[i * cols + j] = 3;
  471. } else if (i == 2) {
  472. static_cast<UINT8_C1 *>(expect.data_ptr_)[i * cols + j] = 1;
  473. } else if (j == 2) {
  474. static_cast<UINT8_C1 *>(expect.data_ptr_)[i * cols + j] = 2;
  475. } else {
  476. static_cast<UINT8_C1 *>(expect.data_ptr_)[i * cols + j] = 0;
  477. }
  478. }
  479. }
  480. double angle = 90.0f;
  481. cv::Point2f center(rows / 2, cols / 2);
  482. cv::Mat rotate_matrix = cv::getRotationMatrix2D(center, angle, 1.0);
  483. double M[6];
  484. for (size_t i = 0; i < 6; i++) {
  485. M[i] = rotate_matrix.at<double>(i);
  486. }
  487. LiteMat dst;
  488. EXPECT_TRUE(Affine(src, dst, M, {rows, cols}, UINT8_C1(0)));
  489. for (size_t i = 0; i < rows; i++) {
  490. for (size_t j = 0; j < cols; j++) {
  491. EXPECT_EQ(static_cast<UINT8_C1 *>(expect.data_ptr_)[i * cols + j].c1,
  492. static_cast<UINT8_C1 *>(dst.data_ptr_)[i * cols + j].c1);
  493. }
  494. }
  495. }
  496. TEST_F(MindDataImageProcess, TestSubtractUint8) {
  497. const size_t cols = 4;
  498. // Test uint8
  499. LiteMat src1_uint8(1, cols);
  500. LiteMat src2_uint8(1, cols);
  501. LiteMat expect_uint8(1, cols);
  502. for (size_t i = 0; i < cols; i++) {
  503. static_cast<UINT8_C1 *>(src1_uint8.data_ptr_)[i] = 3;
  504. static_cast<UINT8_C1 *>(src2_uint8.data_ptr_)[i] = 2;
  505. static_cast<UINT8_C1 *>(expect_uint8.data_ptr_)[i] = 1;
  506. }
  507. LiteMat dst_uint8;
  508. EXPECT_TRUE(Subtract(src1_uint8, src2_uint8, &dst_uint8));
  509. for (size_t i = 0; i < cols; i++) {
  510. EXPECT_EQ(static_cast<UINT8_C1 *>(expect_uint8.data_ptr_)[i].c1,
  511. static_cast<UINT8_C1 *>(dst_uint8.data_ptr_)[i].c1);
  512. }
  513. }
  514. TEST_F(MindDataImageProcess, TestSubtractInt8) {
  515. const size_t cols = 4;
  516. // Test int8
  517. LiteMat src1_int8(1, cols, LDataType(LDataType::INT8));
  518. LiteMat src2_int8(1, cols, LDataType(LDataType::INT8));
  519. LiteMat expect_int8(1, cols, LDataType(LDataType::INT8));
  520. for (size_t i = 0; i < cols; i++) {
  521. static_cast<INT8_C1 *>(src1_int8.data_ptr_)[i] = 2;
  522. static_cast<INT8_C1 *>(src2_int8.data_ptr_)[i] = 3;
  523. static_cast<INT8_C1 *>(expect_int8.data_ptr_)[i] = -1;
  524. }
  525. LiteMat dst_int8;
  526. EXPECT_TRUE(Subtract(src1_int8, src2_int8, &dst_int8));
  527. for (size_t i = 0; i < cols; i++) {
  528. EXPECT_EQ(static_cast<INT8_C1 *>(expect_int8.data_ptr_)[i].c1, static_cast<INT8_C1 *>(dst_int8.data_ptr_)[i].c1);
  529. }
  530. }
  531. TEST_F(MindDataImageProcess, TestSubtractUInt16) {
  532. const size_t cols = 4;
  533. // Test uint16
  534. LiteMat src1_uint16(1, cols, LDataType(LDataType::UINT16));
  535. LiteMat src2_uint16(1, cols, LDataType(LDataType::UINT16));
  536. LiteMat expect_uint16(1, cols, LDataType(LDataType::UINT16));
  537. for (size_t i = 0; i < cols; i++) {
  538. static_cast<UINT16_C1 *>(src1_uint16.data_ptr_)[i] = 2;
  539. static_cast<UINT16_C1 *>(src2_uint16.data_ptr_)[i] = 3;
  540. static_cast<UINT16_C1 *>(expect_uint16.data_ptr_)[i] = 0;
  541. }
  542. LiteMat dst_uint16;
  543. EXPECT_TRUE(Subtract(src1_uint16, src2_uint16, &dst_uint16));
  544. for (size_t i = 0; i < cols; i++) {
  545. EXPECT_EQ(static_cast<UINT16_C1 *>(expect_uint16.data_ptr_)[i].c1,
  546. static_cast<UINT16_C1 *>(dst_uint16.data_ptr_)[i].c1);
  547. }
  548. }
  549. TEST_F(MindDataImageProcess, TestSubtractInt16) {
  550. const size_t cols = 4;
  551. // Test int16
  552. LiteMat src1_int16(1, cols, LDataType(LDataType::INT16));
  553. LiteMat src2_int16(1, cols, LDataType(LDataType::INT16));
  554. LiteMat expect_int16(1, cols, LDataType(LDataType::INT16));
  555. for (size_t i = 0; i < cols; i++) {
  556. static_cast<INT16_C1 *>(src1_int16.data_ptr_)[i] = 2;
  557. static_cast<INT16_C1 *>(src2_int16.data_ptr_)[i] = 3;
  558. static_cast<INT16_C1 *>(expect_int16.data_ptr_)[i] = -1;
  559. }
  560. LiteMat dst_int16;
  561. EXPECT_TRUE(Subtract(src1_int16, src2_int16, &dst_int16));
  562. for (size_t i = 0; i < cols; i++) {
  563. EXPECT_EQ(static_cast<INT16_C1 *>(expect_int16.data_ptr_)[i].c1,
  564. static_cast<INT16_C1 *>(dst_int16.data_ptr_)[i].c1);
  565. }
  566. }
  567. TEST_F(MindDataImageProcess, TestSubtractUInt32) {
  568. const size_t cols = 4;
  569. // Test uint16
  570. LiteMat src1_uint32(1, cols, LDataType(LDataType::UINT32));
  571. LiteMat src2_uint32(1, cols, LDataType(LDataType::UINT32));
  572. LiteMat expect_uint32(1, cols, LDataType(LDataType::UINT32));
  573. for (size_t i = 0; i < cols; i++) {
  574. static_cast<UINT32_C1 *>(src1_uint32.data_ptr_)[i] = 2;
  575. static_cast<UINT32_C1 *>(src2_uint32.data_ptr_)[i] = 3;
  576. static_cast<UINT32_C1 *>(expect_uint32.data_ptr_)[i] = 0;
  577. }
  578. LiteMat dst_uint32;
  579. EXPECT_TRUE(Subtract(src1_uint32, src2_uint32, &dst_uint32));
  580. for (size_t i = 0; i < cols; i++) {
  581. EXPECT_EQ(static_cast<UINT32_C1 *>(expect_uint32.data_ptr_)[i].c1,
  582. static_cast<UINT32_C1 *>(dst_uint32.data_ptr_)[i].c1);
  583. }
  584. }
  585. TEST_F(MindDataImageProcess, TestSubtractInt32) {
  586. const size_t cols = 4;
  587. // Test int32
  588. LiteMat src1_int32(1, cols, LDataType(LDataType::INT32));
  589. LiteMat src2_int32(1, cols, LDataType(LDataType::INT32));
  590. LiteMat expect_int32(1, cols, LDataType(LDataType::INT32));
  591. for (size_t i = 0; i < cols; i++) {
  592. static_cast<INT32_C1 *>(src1_int32.data_ptr_)[i] = 2;
  593. static_cast<INT32_C1 *>(src2_int32.data_ptr_)[i] = 4;
  594. static_cast<INT32_C1 *>(expect_int32.data_ptr_)[i] = -2;
  595. }
  596. LiteMat dst_int32;
  597. EXPECT_TRUE(Subtract(src1_int32, src2_int32, &dst_int32));
  598. for (size_t i = 0; i < cols; i++) {
  599. EXPECT_EQ(static_cast<INT32_C1 *>(expect_int32.data_ptr_)[i].c1,
  600. static_cast<INT32_C1 *>(dst_int32.data_ptr_)[i].c1);
  601. }
  602. }
  603. TEST_F(MindDataImageProcess, TestSubtractFloat) {
  604. const size_t cols = 4;
  605. // Test float
  606. LiteMat src1_float(1, cols, LDataType(LDataType::FLOAT32));
  607. LiteMat src2_float(1, cols, LDataType(LDataType::FLOAT32));
  608. LiteMat expect_float(1, cols, LDataType(LDataType::FLOAT32));
  609. for (size_t i = 0; i < cols; i++) {
  610. static_cast<FLOAT32_C1 *>(src1_float.data_ptr_)[i] = 3.4;
  611. static_cast<FLOAT32_C1 *>(src2_float.data_ptr_)[i] = 5.7;
  612. static_cast<FLOAT32_C1 *>(expect_float.data_ptr_)[i] = -2.3;
  613. }
  614. LiteMat dst_float;
  615. EXPECT_TRUE(Subtract(src1_float, src2_float, &dst_float));
  616. for (size_t i = 0; i < cols; i++) {
  617. EXPECT_FLOAT_EQ(static_cast<FLOAT32_C1 *>(expect_float.data_ptr_)[i].c1,
  618. static_cast<FLOAT32_C1 *>(dst_float.data_ptr_)[i].c1);
  619. }
  620. }
  621. TEST_F(MindDataImageProcess, TestDivideUint8) {
  622. const size_t cols = 4;
  623. // Test uint8
  624. LiteMat src1_uint8(1, cols);
  625. LiteMat src2_uint8(1, cols);
  626. LiteMat expect_uint8(1, cols);
  627. for (size_t i = 0; i < cols; i++) {
  628. static_cast<UINT8_C1 *>(src1_uint8.data_ptr_)[i] = 8;
  629. static_cast<UINT8_C1 *>(src2_uint8.data_ptr_)[i] = 4;
  630. static_cast<UINT8_C1 *>(expect_uint8.data_ptr_)[i] = 2;
  631. }
  632. LiteMat dst_uint8;
  633. EXPECT_TRUE(Divide(src1_uint8, src2_uint8, &dst_uint8));
  634. for (size_t i = 0; i < cols; i++) {
  635. EXPECT_EQ(static_cast<UINT8_C1 *>(expect_uint8.data_ptr_)[i].c1,
  636. static_cast<UINT8_C1 *>(dst_uint8.data_ptr_)[i].c1);
  637. }
  638. }
  639. TEST_F(MindDataImageProcess, TestDivideInt8) {
  640. const size_t cols = 4;
  641. // Test int8
  642. LiteMat src1_int8(1, cols, LDataType(LDataType::INT8));
  643. LiteMat src2_int8(1, cols, LDataType(LDataType::INT8));
  644. LiteMat expect_int8(1, cols, LDataType(LDataType::INT8));
  645. for (size_t i = 0; i < cols; i++) {
  646. static_cast<INT8_C1 *>(src1_int8.data_ptr_)[i] = 8;
  647. static_cast<INT8_C1 *>(src2_int8.data_ptr_)[i] = -4;
  648. static_cast<INT8_C1 *>(expect_int8.data_ptr_)[i] = -2;
  649. }
  650. LiteMat dst_int8;
  651. EXPECT_TRUE(Divide(src1_int8, src2_int8, &dst_int8));
  652. for (size_t i = 0; i < cols; i++) {
  653. EXPECT_EQ(static_cast<INT8_C1 *>(expect_int8.data_ptr_)[i].c1, static_cast<INT8_C1 *>(dst_int8.data_ptr_)[i].c1);
  654. }
  655. }
  656. TEST_F(MindDataImageProcess, TestDivideUInt16) {
  657. const size_t cols = 4;
  658. // Test uint16
  659. LiteMat src1_uint16(1, cols, LDataType(LDataType::UINT16));
  660. LiteMat src2_uint16(1, cols, LDataType(LDataType::UINT16));
  661. LiteMat expect_uint16(1, cols, LDataType(LDataType::UINT16));
  662. for (size_t i = 0; i < cols; i++) {
  663. static_cast<UINT16_C1 *>(src1_uint16.data_ptr_)[i] = 40000;
  664. static_cast<UINT16_C1 *>(src2_uint16.data_ptr_)[i] = 20000;
  665. static_cast<UINT16_C1 *>(expect_uint16.data_ptr_)[i] = 2;
  666. }
  667. LiteMat dst_uint16;
  668. EXPECT_TRUE(Divide(src1_uint16, src2_uint16, &dst_uint16));
  669. for (size_t i = 0; i < cols; i++) {
  670. EXPECT_EQ(static_cast<UINT16_C1 *>(expect_uint16.data_ptr_)[i].c1,
  671. static_cast<UINT16_C1 *>(dst_uint16.data_ptr_)[i].c1);
  672. }
  673. }
  674. TEST_F(MindDataImageProcess, TestDivideInt16) {
  675. const size_t cols = 4;
  676. // Test int16
  677. LiteMat src1_int16(1, cols, LDataType(LDataType::INT16));
  678. LiteMat src2_int16(1, cols, LDataType(LDataType::INT16));
  679. LiteMat expect_int16(1, cols, LDataType(LDataType::INT16));
  680. for (size_t i = 0; i < cols; i++) {
  681. static_cast<INT16_C1 *>(src1_int16.data_ptr_)[i] = 30000;
  682. static_cast<INT16_C1 *>(src2_int16.data_ptr_)[i] = -3;
  683. static_cast<INT16_C1 *>(expect_int16.data_ptr_)[i] = -10000;
  684. }
  685. LiteMat dst_int16;
  686. EXPECT_TRUE(Divide(src1_int16, src2_int16, &dst_int16));
  687. for (size_t i = 0; i < cols; i++) {
  688. EXPECT_EQ(static_cast<INT16_C1 *>(expect_int16.data_ptr_)[i].c1,
  689. static_cast<INT16_C1 *>(dst_int16.data_ptr_)[i].c1);
  690. }
  691. }
  692. TEST_F(MindDataImageProcess, TestDivideUInt32) {
  693. const size_t cols = 4;
  694. // Test uint16
  695. LiteMat src1_uint32(1, cols, LDataType(LDataType::UINT32));
  696. LiteMat src2_uint32(1, cols, LDataType(LDataType::UINT32));
  697. LiteMat expect_uint32(1, cols, LDataType(LDataType::UINT32));
  698. for (size_t i = 0; i < cols; i++) {
  699. static_cast<UINT32_C1 *>(src1_uint32.data_ptr_)[i] = 4000000000;
  700. static_cast<UINT32_C1 *>(src2_uint32.data_ptr_)[i] = 4;
  701. static_cast<UINT32_C1 *>(expect_uint32.data_ptr_)[i] = 1000000000;
  702. }
  703. LiteMat dst_uint32;
  704. EXPECT_TRUE(Divide(src1_uint32, src2_uint32, &dst_uint32));
  705. for (size_t i = 0; i < cols; i++) {
  706. EXPECT_EQ(static_cast<UINT32_C1 *>(expect_uint32.data_ptr_)[i].c1,
  707. static_cast<UINT32_C1 *>(dst_uint32.data_ptr_)[i].c1);
  708. }
  709. }
  710. TEST_F(MindDataImageProcess, TestDivideInt32) {
  711. const size_t cols = 4;
  712. // Test int32
  713. LiteMat src1_int32(1, cols, LDataType(LDataType::INT32));
  714. LiteMat src2_int32(1, cols, LDataType(LDataType::INT32));
  715. LiteMat expect_int32(1, cols, LDataType(LDataType::INT32));
  716. for (size_t i = 0; i < cols; i++) {
  717. static_cast<INT32_C1 *>(src1_int32.data_ptr_)[i] = 2000000000;
  718. static_cast<INT32_C1 *>(src2_int32.data_ptr_)[i] = -2;
  719. static_cast<INT32_C1 *>(expect_int32.data_ptr_)[i] = -1000000000;
  720. }
  721. LiteMat dst_int32;
  722. EXPECT_TRUE(Divide(src1_int32, src2_int32, &dst_int32));
  723. for (size_t i = 0; i < cols; i++) {
  724. EXPECT_EQ(static_cast<INT32_C1 *>(expect_int32.data_ptr_)[i].c1,
  725. static_cast<INT32_C1 *>(dst_int32.data_ptr_)[i].c1);
  726. }
  727. }
  728. TEST_F(MindDataImageProcess, TestDivideFloat) {
  729. const size_t cols = 4;
  730. // Test float
  731. LiteMat src1_float(1, cols, LDataType(LDataType::FLOAT32));
  732. LiteMat src2_float(1, cols, LDataType(LDataType::FLOAT32));
  733. LiteMat expect_float(1, cols, LDataType(LDataType::FLOAT32));
  734. for (size_t i = 0; i < cols; i++) {
  735. static_cast<FLOAT32_C1 *>(src1_float.data_ptr_)[i] = 12.34f;
  736. static_cast<FLOAT32_C1 *>(src2_float.data_ptr_)[i] = -2.0f;
  737. static_cast<FLOAT32_C1 *>(expect_float.data_ptr_)[i] = -6.17f;
  738. }
  739. LiteMat dst_float;
  740. EXPECT_TRUE(Divide(src1_float, src2_float, &dst_float));
  741. for (size_t i = 0; i < cols; i++) {
  742. EXPECT_FLOAT_EQ(static_cast<FLOAT32_C1 *>(expect_float.data_ptr_)[i].c1,
  743. static_cast<FLOAT32_C1 *>(dst_float.data_ptr_)[i].c1);
  744. }
  745. }
  746. TEST_F(MindDataImageProcess, TestMultiplyUint8) {
  747. const size_t cols = 4;
  748. // Test uint8
  749. LiteMat src1_uint8(1, cols);
  750. LiteMat src2_uint8(1, cols);
  751. LiteMat expect_uint8(1, cols);
  752. for (size_t i = 0; i < cols; i++) {
  753. static_cast<UINT8_C1 *>(src1_uint8.data_ptr_)[i] = 8;
  754. static_cast<UINT8_C1 *>(src2_uint8.data_ptr_)[i] = 4;
  755. static_cast<UINT8_C1 *>(expect_uint8.data_ptr_)[i] = 32;
  756. }
  757. LiteMat dst_uint8;
  758. EXPECT_TRUE(Multiply(src1_uint8, src2_uint8, &dst_uint8));
  759. for (size_t i = 0; i < cols; i++) {
  760. EXPECT_EQ(static_cast<UINT8_C1 *>(expect_uint8.data_ptr_)[i].c1,
  761. static_cast<UINT8_C1 *>(dst_uint8.data_ptr_)[i].c1);
  762. }
  763. }
  764. TEST_F(MindDataImageProcess, TestMultiplyUInt16) {
  765. const size_t cols = 4;
  766. // Test int16
  767. LiteMat src1_int16(1, cols, LDataType(LDataType::UINT16));
  768. LiteMat src2_int16(1, cols, LDataType(LDataType::UINT16));
  769. LiteMat expect_int16(1, cols, LDataType(LDataType::UINT16));
  770. for (size_t i = 0; i < cols; i++) {
  771. static_cast<UINT16_C1 *>(src1_int16.data_ptr_)[i] = 60000;
  772. static_cast<UINT16_C1 *>(src2_int16.data_ptr_)[i] = 2;
  773. static_cast<UINT16_C1 *>(expect_int16.data_ptr_)[i] = 65535;
  774. }
  775. LiteMat dst_int16;
  776. EXPECT_TRUE(Multiply(src1_int16, src2_int16, &dst_int16));
  777. for (size_t i = 0; i < cols; i++) {
  778. EXPECT_EQ(static_cast<UINT16_C1 *>(expect_int16.data_ptr_)[i].c1,
  779. static_cast<UINT16_C1 *>(dst_int16.data_ptr_)[i].c1);
  780. }
  781. }
  782. TEST_F(MindDataImageProcess, TestMultiplyFloat) {
  783. const size_t cols = 4;
  784. // Test float
  785. LiteMat src1_float(1, cols, LDataType(LDataType::FLOAT32));
  786. LiteMat src2_float(1, cols, LDataType(LDataType::FLOAT32));
  787. LiteMat expect_float(1, cols, LDataType(LDataType::FLOAT32));
  788. for (size_t i = 0; i < cols; i++) {
  789. static_cast<FLOAT32_C1 *>(src1_float.data_ptr_)[i] = 30.0f;
  790. static_cast<FLOAT32_C1 *>(src2_float.data_ptr_)[i] = -2.0f;
  791. static_cast<FLOAT32_C1 *>(expect_float.data_ptr_)[i] = -60.0f;
  792. }
  793. LiteMat dst_float;
  794. EXPECT_TRUE(Multiply(src1_float, src2_float, &dst_float));
  795. for (size_t i = 0; i < cols; i++) {
  796. EXPECT_FLOAT_EQ(static_cast<FLOAT32_C1 *>(expect_float.data_ptr_)[i].c1,
  797. static_cast<FLOAT32_C1 *>(dst_float.data_ptr_)[i].c1);
  798. }
  799. }
  800. TEST_F(MindDataImageProcess, TestExtractChannel) {
  801. LiteMat lite_single;
  802. LiteMat lite_mat = LiteMat(1, 4, 3, LDataType::UINT16);
  803. EXPECT_FALSE(ExtractChannel(lite_mat, lite_single, 0));
  804. EXPECT_TRUE(lite_single.IsEmpty());
  805. }
  806. TEST_F(MindDataImageProcess, testROI3C) {
  807. std::string filename = "data/dataset/apple.jpg";
  808. cv::Mat src_image = cv::imread(filename, cv::ImreadModes::IMREAD_COLOR);
  809. cv::Mat cv_roi = cv::Mat(src_image, cv::Rect(500, 500, 3000, 1500));
  810. cv::imwrite("./cv_roi.jpg", cv_roi);
  811. bool ret = false;
  812. LiteMat lite_mat_bgr;
  813. ret = InitFromPixel(src_image.data, LPixelType::BGR, LDataType::UINT8, src_image.cols, src_image.rows, lite_mat_bgr);
  814. EXPECT_TRUE(ret);
  815. LiteMat lite_roi;
  816. ret = lite_mat_bgr.GetROI(500, 500, 3000, 1500, lite_roi);
  817. EXPECT_TRUE(ret);
  818. LiteMat lite_roi_save(3000, 1500, lite_roi.channel_, LDataType::UINT8);
  819. for (size_t i = 0; i < lite_roi.height_; i++) {
  820. const unsigned char *ptr = lite_roi.ptr<unsigned char>(i);
  821. size_t image_size = lite_roi.width_ * lite_roi.channel_ * sizeof(unsigned char);
  822. unsigned char *dst_ptr = (unsigned char *)lite_roi_save.data_ptr_ + image_size * i;
  823. (void)memcpy(dst_ptr, ptr, image_size);
  824. }
  825. cv::Mat dst_imageR(lite_roi_save.height_, lite_roi_save.width_, CV_8UC3, lite_roi_save.data_ptr_);
  826. cv::imwrite("./lite_roi.jpg", dst_imageR);
  827. }
  828. TEST_F(MindDataImageProcess, testROI3CFalse) {
  829. std::string filename = "data/dataset/apple.jpg";
  830. cv::Mat src_image = cv::imread(filename, cv::ImreadModes::IMREAD_COLOR);
  831. cv::Mat cv_roi = cv::Mat(src_image, cv::Rect(500, 500, 3000, 1500));
  832. cv::imwrite("./cv_roi.jpg", cv_roi);
  833. bool ret = false;
  834. LiteMat lite_mat_bgr;
  835. ret = InitFromPixel(src_image.data, LPixelType::BGR, LDataType::UINT8, src_image.cols, src_image.rows, lite_mat_bgr);
  836. EXPECT_TRUE(ret);
  837. LiteMat lite_roi;
  838. ret = lite_mat_bgr.GetROI(500, 500, 1200, -100, lite_roi);
  839. EXPECT_FALSE(ret);
  840. }
  841. TEST_F(MindDataImageProcess, testROI1C) {
  842. std::string filename = "data/dataset/apple.jpg";
  843. cv::Mat src_image = cv::imread(filename, cv::ImreadModes::IMREAD_COLOR);
  844. cv::Mat gray_image;
  845. cv::cvtColor(src_image, gray_image, CV_BGR2GRAY);
  846. cv::Mat cv_roi_gray = cv::Mat(gray_image, cv::Rect(500, 500, 3000, 1500));
  847. cv::imwrite("./cv_roi_gray.jpg", cv_roi_gray);
  848. cv::Mat rgba_mat;
  849. cv::cvtColor(src_image, rgba_mat, CV_BGR2RGBA);
  850. bool ret = false;
  851. LiteMat lite_mat_gray;
  852. ret =
  853. InitFromPixel(rgba_mat.data, LPixelType::RGBA2GRAY, LDataType::UINT8, rgba_mat.cols, rgba_mat.rows, lite_mat_gray);
  854. EXPECT_TRUE(ret);
  855. LiteMat lite_roi_gray;
  856. ret = lite_mat_gray.GetROI(500, 500, 3000, 1500, lite_roi_gray);
  857. EXPECT_TRUE(ret);
  858. LiteMat lite_roi_gray_save(3000, 1500, lite_roi_gray.channel_, LDataType::UINT8);
  859. for (size_t i = 0; i < lite_roi_gray.height_; i++) {
  860. const unsigned char *ptr = lite_roi_gray.ptr<unsigned char>(i);
  861. size_t image_size = lite_roi_gray.width_ * lite_roi_gray.channel_ * sizeof(unsigned char);
  862. unsigned char *dst_ptr = (unsigned char *)lite_roi_gray_save.data_ptr_ + image_size * i;
  863. (void)memcpy(dst_ptr, ptr, image_size);
  864. }
  865. cv::Mat dst_imageR(lite_roi_gray_save.height_, lite_roi_gray_save.width_, CV_8UC1, lite_roi_gray_save.data_ptr_);
  866. cv::imwrite("./lite_roi.jpg", dst_imageR);
  867. }
  868. // warp
  869. TEST_F(MindDataImageProcess, testWarpAffineBGR) {
  870. std::string filename = "data/dataset/apple.jpg";
  871. cv::Mat src_image = cv::imread(filename, cv::ImreadModes::IMREAD_COLOR);
  872. cv::Point2f srcTri[3];
  873. cv::Point2f dstTri[3];
  874. srcTri[0] = cv::Point2f(0, 0);
  875. srcTri[1] = cv::Point2f(src_image.cols - 1, 0);
  876. srcTri[2] = cv::Point2f(0, src_image.rows - 1);
  877. dstTri[0] = cv::Point2f(src_image.cols * 0.0, src_image.rows * 0.33);
  878. dstTri[1] = cv::Point2f(src_image.cols * 0.85, src_image.rows * 0.25);
  879. dstTri[2] = cv::Point2f(src_image.cols * 0.15, src_image.rows * 0.7);
  880. cv::Mat warp_mat = cv::getAffineTransform(srcTri, dstTri);
  881. ;
  882. cv::Mat warp_dstImage;
  883. cv::warpAffine(src_image, warp_dstImage, warp_mat, warp_dstImage.size());
  884. cv::imwrite("./warpAffine_cv_bgr.png", warp_dstImage);
  885. bool ret = false;
  886. LiteMat lite_mat_bgr;
  887. ret = InitFromPixel(src_image.data, LPixelType::BGR, LDataType::UINT8, src_image.cols, src_image.rows, lite_mat_bgr);
  888. EXPECT_TRUE(ret);
  889. double *mat_ptr = warp_mat.ptr<double>(0);
  890. LiteMat lite_M(3, 2, 1, mat_ptr, LDataType::DOUBLE);
  891. LiteMat lite_warp;
  892. std::vector<uint8_t> borderValues;
  893. borderValues.push_back(0);
  894. borderValues.push_back(0);
  895. borderValues.push_back(0);
  896. ret = WarpAffineBilinear(lite_mat_bgr, lite_warp, lite_M, lite_mat_bgr.width_, lite_mat_bgr.height_,
  897. PADD_BORDER_CONSTANT, borderValues);
  898. EXPECT_TRUE(ret);
  899. cv::Mat dst_imageR(lite_warp.height_, lite_warp.width_, CV_8UC3, lite_warp.data_ptr_);
  900. cv::imwrite("./warpAffine_lite_bgr.png", dst_imageR);
  901. }
  902. TEST_F(MindDataImageProcess, testWarpAffineBGRScale) {
  903. std::string filename = "data/dataset/apple.jpg";
  904. cv::Mat src_image = cv::imread(filename, cv::ImreadModes::IMREAD_COLOR);
  905. cv::Point2f srcTri[3];
  906. cv::Point2f dstTri[3];
  907. srcTri[0] = cv::Point2f(10, 20);
  908. srcTri[1] = cv::Point2f(src_image.cols - 1 - 100, 0);
  909. srcTri[2] = cv::Point2f(0, src_image.rows - 1 - 300);
  910. dstTri[0] = cv::Point2f(src_image.cols * 0.22, src_image.rows * 0.33);
  911. dstTri[1] = cv::Point2f(src_image.cols * 0.87, src_image.rows * 0.75);
  912. dstTri[2] = cv::Point2f(src_image.cols * 0.35, src_image.rows * 0.37);
  913. cv::Mat warp_mat = cv::getAffineTransform(srcTri, dstTri);
  914. ;
  915. cv::Mat warp_dstImage;
  916. cv::warpAffine(src_image, warp_dstImage, warp_mat, warp_dstImage.size());
  917. cv::imwrite("./warpAffine_cv_bgr_scale.png", warp_dstImage);
  918. bool ret = false;
  919. LiteMat lite_mat_bgr;
  920. ret = InitFromPixel(src_image.data, LPixelType::BGR, LDataType::UINT8, src_image.cols, src_image.rows, lite_mat_bgr);
  921. EXPECT_TRUE(ret);
  922. double *mat_ptr = warp_mat.ptr<double>(0);
  923. LiteMat lite_M(3, 2, 1, mat_ptr, LDataType::DOUBLE);
  924. LiteMat lite_warp;
  925. std::vector<uint8_t> borderValues;
  926. borderValues.push_back(0);
  927. borderValues.push_back(0);
  928. borderValues.push_back(0);
  929. ret = WarpAffineBilinear(lite_mat_bgr, lite_warp, lite_M, lite_mat_bgr.width_, lite_mat_bgr.height_,
  930. PADD_BORDER_CONSTANT, borderValues);
  931. EXPECT_TRUE(ret);
  932. cv::Mat dst_imageR(lite_warp.height_, lite_warp.width_, CV_8UC3, lite_warp.data_ptr_);
  933. cv::imwrite("./warpAffine_lite_bgr_scale.png", dst_imageR);
  934. }
  935. TEST_F(MindDataImageProcess, testWarpAffineBGRResize) {
  936. std::string filename = "data/dataset/apple.jpg";
  937. cv::Mat src_image = cv::imread(filename, cv::ImreadModes::IMREAD_COLOR);
  938. cv::Point2f srcTri[3];
  939. cv::Point2f dstTri[3];
  940. srcTri[0] = cv::Point2f(10, 20);
  941. srcTri[1] = cv::Point2f(src_image.cols - 1 - 100, 0);
  942. srcTri[2] = cv::Point2f(0, src_image.rows - 1 - 300);
  943. dstTri[0] = cv::Point2f(src_image.cols * 0.22, src_image.rows * 0.33);
  944. dstTri[1] = cv::Point2f(src_image.cols * 0.87, src_image.rows * 0.75);
  945. dstTri[2] = cv::Point2f(src_image.cols * 0.35, src_image.rows * 0.37);
  946. cv::Mat warp_mat = cv::getAffineTransform(srcTri, dstTri);
  947. ;
  948. cv::Mat warp_dstImage;
  949. cv::warpAffine(src_image, warp_dstImage, warp_mat, cv::Size(src_image.cols + 200, src_image.rows - 300));
  950. cv::imwrite("./warpAffine_cv_bgr_resize.png", warp_dstImage);
  951. bool ret = false;
  952. LiteMat lite_mat_bgr;
  953. ret = InitFromPixel(src_image.data, LPixelType::BGR, LDataType::UINT8, src_image.cols, src_image.rows, lite_mat_bgr);
  954. EXPECT_TRUE(ret);
  955. double *mat_ptr = warp_mat.ptr<double>(0);
  956. LiteMat lite_M(3, 2, 1, mat_ptr, LDataType::DOUBLE);
  957. LiteMat lite_warp;
  958. std::vector<uint8_t> borderValues;
  959. borderValues.push_back(0);
  960. borderValues.push_back(0);
  961. borderValues.push_back(0);
  962. ret = WarpAffineBilinear(lite_mat_bgr, lite_warp, lite_M, lite_mat_bgr.width_ + 200, lite_mat_bgr.height_ - 300,
  963. PADD_BORDER_CONSTANT, borderValues);
  964. EXPECT_TRUE(ret);
  965. cv::Mat dst_imageR(lite_warp.height_, lite_warp.width_, CV_8UC3, lite_warp.data_ptr_);
  966. cv::imwrite("./warpAffine_lite_bgr_resize.png", dst_imageR);
  967. }
  968. TEST_F(MindDataImageProcess, testWarpAffineGray) {
  969. std::string filename = "data/dataset/apple.jpg";
  970. cv::Mat src_image = cv::imread(filename, cv::ImreadModes::IMREAD_COLOR);
  971. cv::Mat gray_image;
  972. cv::cvtColor(src_image, gray_image, CV_BGR2GRAY);
  973. cv::Point2f srcTri[3];
  974. cv::Point2f dstTri[3];
  975. srcTri[0] = cv::Point2f(0, 0);
  976. srcTri[1] = cv::Point2f(src_image.cols - 1, 0);
  977. srcTri[2] = cv::Point2f(0, src_image.rows - 1);
  978. dstTri[0] = cv::Point2f(src_image.cols * 0.0, src_image.rows * 0.33);
  979. dstTri[1] = cv::Point2f(src_image.cols * 0.85, src_image.rows * 0.25);
  980. dstTri[2] = cv::Point2f(src_image.cols * 0.15, src_image.rows * 0.7);
  981. cv::Mat warp_mat = cv::getAffineTransform(srcTri, dstTri);
  982. ;
  983. cv::Mat warp_gray_dstImage;
  984. cv::warpAffine(gray_image, warp_gray_dstImage, warp_mat, cv::Size(src_image.cols + 200, src_image.rows - 300));
  985. cv::imwrite("./warpAffine_cv_gray.png", warp_gray_dstImage);
  986. cv::Mat rgba_mat;
  987. cv::cvtColor(src_image, rgba_mat, CV_BGR2RGBA);
  988. bool ret = false;
  989. LiteMat lite_mat_gray;
  990. ret =
  991. InitFromPixel(rgba_mat.data, LPixelType::RGBA2GRAY, LDataType::UINT8, rgba_mat.cols, rgba_mat.rows, lite_mat_gray);
  992. EXPECT_TRUE(ret);
  993. double *mat_ptr = warp_mat.ptr<double>(0);
  994. LiteMat lite_M(3, 2, 1, mat_ptr, LDataType::DOUBLE);
  995. LiteMat lite_warp;
  996. std::vector<uint8_t> borderValues;
  997. borderValues.push_back(0);
  998. ret = WarpAffineBilinear(lite_mat_gray, lite_warp, lite_M, lite_mat_gray.width_ + 200, lite_mat_gray.height_ - 300,
  999. PADD_BORDER_CONSTANT, borderValues);
  1000. EXPECT_TRUE(ret);
  1001. cv::Mat dst_imageR(lite_warp.height_, lite_warp.width_, CV_8UC1, lite_warp.data_ptr_);
  1002. cv::imwrite("./warpAffine_lite_gray.png", dst_imageR);
  1003. }
  1004. TEST_F(MindDataImageProcess, testWarpPerspectiveBGRResize) {
  1005. std::string filename = "data/dataset/apple.jpg";
  1006. cv::Mat src_image = cv::imread(filename, cv::ImreadModes::IMREAD_COLOR);
  1007. cv::Point2f srcQuad[4], dstQuad[4];
  1008. srcQuad[0].x = 0;
  1009. srcQuad[0].y = 0;
  1010. srcQuad[1].x = src_image.cols - 1.;
  1011. srcQuad[1].y = 0;
  1012. srcQuad[2].x = 0;
  1013. srcQuad[2].y = src_image.rows - 1;
  1014. srcQuad[3].x = src_image.cols - 1;
  1015. srcQuad[3].y = src_image.rows - 1;
  1016. dstQuad[0].x = src_image.cols * 0.05;
  1017. dstQuad[0].y = src_image.rows * 0.33;
  1018. dstQuad[1].x = src_image.cols * 0.9;
  1019. dstQuad[1].y = src_image.rows * 0.25;
  1020. dstQuad[2].x = src_image.cols * 0.2;
  1021. dstQuad[2].y = src_image.rows * 0.7;
  1022. dstQuad[3].x = src_image.cols * 0.8;
  1023. dstQuad[3].y = src_image.rows * 0.9;
  1024. cv::Mat ptran = cv::getPerspectiveTransform(srcQuad, dstQuad, cv::DECOMP_SVD);
  1025. cv::Mat warp_dstImage;
  1026. cv::warpPerspective(src_image, warp_dstImage, ptran, cv::Size(src_image.cols + 200, src_image.rows - 300));
  1027. cv::imwrite("./warpPerspective_cv_bgr.png", warp_dstImage);
  1028. bool ret = false;
  1029. LiteMat lite_mat_bgr;
  1030. ret = InitFromPixel(src_image.data, LPixelType::BGR, LDataType::UINT8, src_image.cols, src_image.rows, lite_mat_bgr);
  1031. EXPECT_TRUE(ret);
  1032. double *mat_ptr = ptran.ptr<double>(0);
  1033. LiteMat lite_M(3, 3, 1, mat_ptr, LDataType::DOUBLE);
  1034. LiteMat lite_warp;
  1035. std::vector<uint8_t> borderValues;
  1036. borderValues.push_back(0);
  1037. borderValues.push_back(0);
  1038. borderValues.push_back(0);
  1039. ret = WarpPerspectiveBilinear(lite_mat_bgr, lite_warp, lite_M, lite_mat_bgr.width_ + 200, lite_mat_bgr.height_ - 300,
  1040. PADD_BORDER_CONSTANT, borderValues);
  1041. EXPECT_TRUE(ret);
  1042. cv::Mat dst_imageR(lite_warp.height_, lite_warp.width_, CV_8UC3, lite_warp.data_ptr_);
  1043. cv::imwrite("./warpPerspective_lite_bgr.png", dst_imageR);
  1044. }
  1045. TEST_F(MindDataImageProcess, testWarpPerspectiveGrayResize) {
  1046. std::string filename = "data/dataset/apple.jpg";
  1047. cv::Mat src_image = cv::imread(filename, cv::ImreadModes::IMREAD_COLOR);
  1048. cv::Mat gray_image;
  1049. cv::cvtColor(src_image, gray_image, CV_BGR2GRAY);
  1050. cv::Point2f srcQuad[4], dstQuad[4];
  1051. srcQuad[0].x = 0;
  1052. srcQuad[0].y = 0;
  1053. srcQuad[1].x = src_image.cols - 1.;
  1054. srcQuad[1].y = 0;
  1055. srcQuad[2].x = 0;
  1056. srcQuad[2].y = src_image.rows - 1;
  1057. srcQuad[3].x = src_image.cols - 1;
  1058. srcQuad[3].y = src_image.rows - 1;
  1059. dstQuad[0].x = src_image.cols * 0.05;
  1060. dstQuad[0].y = src_image.rows * 0.33;
  1061. dstQuad[1].x = src_image.cols * 0.9;
  1062. dstQuad[1].y = src_image.rows * 0.25;
  1063. dstQuad[2].x = src_image.cols * 0.2;
  1064. dstQuad[2].y = src_image.rows * 0.7;
  1065. dstQuad[3].x = src_image.cols * 0.8;
  1066. dstQuad[3].y = src_image.rows * 0.9;
  1067. cv::Mat ptran = cv::getPerspectiveTransform(srcQuad, dstQuad, cv::DECOMP_SVD);
  1068. cv::Mat warp_dstImage;
  1069. cv::warpPerspective(gray_image, warp_dstImage, ptran, cv::Size(gray_image.cols + 200, gray_image.rows - 300));
  1070. cv::imwrite("./warpPerspective_cv_gray.png", warp_dstImage);
  1071. cv::Mat rgba_mat;
  1072. cv::cvtColor(src_image, rgba_mat, CV_BGR2RGBA);
  1073. bool ret = false;
  1074. LiteMat lite_mat_gray;
  1075. ret =
  1076. InitFromPixel(rgba_mat.data, LPixelType::RGBA2GRAY, LDataType::UINT8, rgba_mat.cols, rgba_mat.rows, lite_mat_gray);
  1077. EXPECT_TRUE(ret);
  1078. double *mat_ptr = ptran.ptr<double>(0);
  1079. LiteMat lite_M(3, 3, 1, mat_ptr, LDataType::DOUBLE);
  1080. LiteMat lite_warp;
  1081. std::vector<uint8_t> borderValues;
  1082. borderValues.push_back(0);
  1083. ret = WarpPerspectiveBilinear(lite_mat_gray, lite_warp, lite_M, lite_mat_gray.width_ + 200,
  1084. lite_mat_gray.height_ - 300, PADD_BORDER_CONSTANT, borderValues);
  1085. EXPECT_TRUE(ret);
  1086. cv::Mat dst_imageR(lite_warp.height_, lite_warp.width_, CV_8UC1, lite_warp.data_ptr_);
  1087. cv::imwrite("./warpPerspective_lite_gray.png", dst_imageR);
  1088. }
  1089. TEST_F(MindDataImageProcess, testGetRotationMatrix2D) {
  1090. std::vector<std::vector<double>> expect_matrix = {{0.250000, 0.433013, -0.116025}, {-0.433013, 0.250000, 1.933013}};
  1091. double angle = 60.0;
  1092. double scale = 0.5;
  1093. LiteMat M;
  1094. bool ret = false;
  1095. ret = GetRotationMatrix2D(1.0f, 2.0f, angle, scale, M);
  1096. EXPECT_TRUE(ret);
  1097. AccuracyComparison(expect_matrix, M);
  1098. }
  1099. TEST_F(MindDataImageProcess, testGetPerspectiveTransform) {
  1100. std::vector<std::vector<double>> expect_matrix = {
  1101. {1.272113, 3.665216, -788.484287}, {-0.394146, 3.228247, -134.009780}, {-0.001460, 0.006414, 1}};
  1102. std::vector<Point> src = {Point(165, 270), Point(835, 270), Point(360, 125), Point(615, 125)};
  1103. std::vector<Point> dst = {Point(165, 270), Point(835, 270), Point(100, 100), Point(500, 30)};
  1104. LiteMat M;
  1105. bool ret = false;
  1106. ret = GetPerspectiveTransform(src, dst, M);
  1107. EXPECT_TRUE(ret);
  1108. AccuracyComparison(expect_matrix, M);
  1109. }
  1110. TEST_F(MindDataImageProcess, testGetAffineTransform) {
  1111. std::vector<std::vector<double>> expect_matrix = {{0.400000, 0.066667, 16.666667}, {0.000000, 0.333333, 23.333333}};
  1112. std::vector<Point> src = {Point(50, 50), Point(200, 50), Point(50, 200)};
  1113. std::vector<Point> dst = {Point(40, 40), Point(100, 40), Point(50, 90)};
  1114. LiteMat M;
  1115. bool ret = false;
  1116. ret = GetAffineTransform(src, dst, M);
  1117. EXPECT_TRUE(ret);
  1118. AccuracyComparison(expect_matrix, M);
  1119. }