You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

execute_test.cc 8.5 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214
  1. /**
  2. * Copyright 2020-2021 Huawei Technologies Co., Ltd
  3. *
  4. * Licensed under the Apache License, Version 2.0 (the "License");
  5. * you may not use this file except in compliance with the License.
  6. * You may obtain a copy of the License at
  7. *
  8. * http://www.apache.org/licenses/LICENSE-2.0
  9. *
  10. * Unless required by applicable law or agreed to in writing, software
  11. * distributed under the License is distributed on an "AS IS" BASIS,
  12. * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  13. * See the License for the specific language governing permissions and
  14. * limitations under the License.
  15. */
  16. #include "common/common.h"
  17. #include "common/cvop_common.h"
  18. #include "minddata/dataset/core/de_tensor.h"
  19. #include "minddata/dataset/include/execute.h"
  20. #include "minddata/dataset/include/transforms.h"
  21. #include "minddata/dataset/include/vision.h"
  22. #include "utils/log_adapter.h"
  23. using namespace mindspore::dataset;
  24. using mindspore::LogStream;
  25. using mindspore::ExceptionType::NoExceptionType;
  26. using mindspore::MsLogLevel::INFO;
  27. class MindDataTestExecute : public UT::CVOP::CVOpCommon {
  28. protected:
  29. MindDataTestExecute() : CVOpCommon() {}
  30. std::shared_ptr<Tensor> output_tensor_;
  31. };
  32. TEST_F(MindDataTestExecute, TestComposeTransforms) {
  33. MS_LOG(INFO) << "Doing TestComposeTransforms.";
  34. std::shared_ptr<mindspore::dataset::Tensor> de_tensor;
  35. mindspore::dataset::Tensor::CreateFromFile("data/dataset/apple.jpg", &de_tensor);
  36. auto image = mindspore::MSTensor(std::make_shared<DETensor>(de_tensor));
  37. // Transform params
  38. std::shared_ptr<TensorTransform> decode = std::make_shared<vision::Decode>();
  39. std::shared_ptr<TensorTransform> center_crop(new vision::CenterCrop({30}));
  40. std::shared_ptr<TensorTransform> rescale = std::make_shared<vision::Rescale>(1. / 3, 0.5);
  41. auto transform = Execute({decode, center_crop, rescale});
  42. Status rc = transform(image, &image);
  43. EXPECT_EQ(rc, Status::OK());
  44. EXPECT_EQ(30, image.Shape()[0]);
  45. EXPECT_EQ(30, image.Shape()[1]);
  46. }
  47. TEST_F(MindDataTestExecute, TestTransformInput1) {
  48. MS_LOG(INFO) << "Doing MindDataTestExecute-TestTransformInput1.";
  49. // Test Execute with transform op input using API constructors, with std::shared_ptr<TensorTransform pointers,
  50. // instantiated via mix of make_shared and new
  51. // Read images
  52. std::shared_ptr<mindspore::dataset::Tensor> de_tensor;
  53. mindspore::dataset::Tensor::CreateFromFile("data/dataset/apple.jpg", &de_tensor);
  54. auto image = mindspore::MSTensor(std::make_shared<mindspore::dataset::DETensor>(de_tensor));
  55. // Define transform operations
  56. std::shared_ptr<TensorTransform> decode = std::make_shared<vision::Decode>();
  57. std::shared_ptr<TensorTransform> resize(new vision::Resize({224, 224}));
  58. std::shared_ptr<TensorTransform> normalize(
  59. new vision::Normalize({0.485 * 255, 0.456 * 255, 0.406 * 255}, {0.229 * 255, 0.224 * 255, 0.225 * 255}));
  60. std::shared_ptr<TensorTransform> hwc2chw = std::make_shared<vision::HWC2CHW>();
  61. mindspore::dataset::Execute Transform({decode, resize, normalize, hwc2chw});
  62. // Apply transform on image
  63. Status rc = Transform(image, &image);
  64. // Check image info
  65. ASSERT_TRUE(rc.IsOk());
  66. ASSERT_EQ(image.Shape().size(), 3);
  67. ASSERT_EQ(image.Shape()[0], 3);
  68. ASSERT_EQ(image.Shape()[1], 224);
  69. ASSERT_EQ(image.Shape()[2], 224);
  70. }
  71. TEST_F(MindDataTestExecute, TestTransformInput2) {
  72. MS_LOG(INFO) << "Doing MindDataTestExecute-TestTransformInput2.";
  73. // Test Execute with transform op input using API constructors, with std::shared_ptr<TensorTransform pointers,
  74. // instantiated via new
  75. // Read images
  76. std::shared_ptr<mindspore::dataset::Tensor> de_tensor;
  77. mindspore::dataset::Tensor::CreateFromFile("data/dataset/apple.jpg", &de_tensor);
  78. auto image = mindspore::MSTensor(std::make_shared<mindspore::dataset::DETensor>(de_tensor));
  79. // Define transform operations
  80. std::shared_ptr<TensorTransform> decode(new vision::Decode());
  81. std::shared_ptr<TensorTransform> resize(new vision::Resize({224, 224}));
  82. std::shared_ptr<TensorTransform> normalize(
  83. new vision::Normalize({0.485 * 255, 0.456 * 255, 0.406 * 255}, {0.229 * 255, 0.224 * 255, 0.225 * 255}));
  84. std::shared_ptr<TensorTransform> hwc2chw(new vision::HWC2CHW());
  85. mindspore::dataset::Execute Transform({decode, resize, normalize, hwc2chw});
  86. // Apply transform on image
  87. Status rc = Transform(image, &image);
  88. // Check image info
  89. ASSERT_TRUE(rc.IsOk());
  90. ASSERT_EQ(image.Shape().size(), 3);
  91. ASSERT_EQ(image.Shape()[0], 3);
  92. ASSERT_EQ(image.Shape()[1], 224);
  93. ASSERT_EQ(image.Shape()[2], 224);
  94. }
  95. TEST_F(MindDataTestExecute, TestTransformInput3) {
  96. MS_LOG(INFO) << "Doing MindDataTestExecute-TestTransformInput3.";
  97. // Test Execute with transform op input using API constructors, with auto pointers
  98. // Read image
  99. std::shared_ptr<mindspore::dataset::Tensor> de_tensor;
  100. mindspore::dataset::Tensor::CreateFromFile("data/dataset/apple.jpg", &de_tensor);
  101. auto image = mindspore::MSTensor(std::make_shared<mindspore::dataset::DETensor>(de_tensor));
  102. // Define transform operations
  103. auto decode(new vision::Decode()); // auto will create raw pointer to Decode class
  104. auto resize(new vision::Resize({224, 224}));
  105. auto normalize(
  106. new vision::Normalize({0.485 * 255, 0.456 * 255, 0.406 * 255}, {0.229 * 255, 0.224 * 255, 0.225 * 255}));
  107. auto hwc2chw(new vision::HWC2CHW());
  108. std::vector<TensorTransform *> op_list = {decode, resize, normalize, hwc2chw};
  109. mindspore::dataset::Execute Transform(op_list);
  110. // Apply transform on image
  111. Status rc = Transform(image, &image);
  112. // Check image info
  113. ASSERT_TRUE(rc.IsOk());
  114. ASSERT_EQ(image.Shape().size(), 3);
  115. ASSERT_EQ(image.Shape()[0], 3);
  116. ASSERT_EQ(image.Shape()[1], 224);
  117. ASSERT_EQ(image.Shape()[2], 224);
  118. }
  119. TEST_F(MindDataTestExecute, TestTransformInputSequential) {
  120. MS_LOG(INFO) << "Doing MindDataTestExecute-TestTransformInputSequential.";
  121. // Test Execute with transform op input using API constructors, with auto pointers;
  122. // Apply 2 transformations sequentially, including single non-vector Transform op input
  123. // Read images
  124. std::shared_ptr<mindspore::dataset::Tensor> de_tensor;
  125. mindspore::dataset::Tensor::CreateFromFile("data/dataset/apple.jpg", &de_tensor);
  126. auto image = mindspore::MSTensor(std::make_shared<mindspore::dataset::DETensor>(de_tensor));
  127. // Define transform#1 operations
  128. auto decode(new vision::Decode()); // auto will create raw pointer to Decode class
  129. auto resize(new vision::Resize({224, 224}));
  130. auto normalize(
  131. new vision::Normalize({0.485 * 255, 0.456 * 255, 0.406 * 255}, {0.229 * 255, 0.224 * 255, 0.225 * 255}));
  132. std::vector<TensorTransform *> op_list = {decode, resize, normalize};
  133. mindspore::dataset::Execute Transform(op_list);
  134. // Apply transform#1 on image
  135. Status rc = Transform(image, &image);
  136. // Define transform#2 operations
  137. auto hwc2chw(new vision::HWC2CHW());
  138. TensorTransform *op_single = hwc2chw;
  139. mindspore::dataset::Execute Transform2(op_single);
  140. // Apply transform#2 on image
  141. rc = Transform2(image, &image);
  142. // Check image info
  143. ASSERT_TRUE(rc.IsOk());
  144. ASSERT_EQ(image.Shape().size(), 3);
  145. ASSERT_EQ(image.Shape()[0], 3);
  146. ASSERT_EQ(image.Shape()[1], 224);
  147. ASSERT_EQ(image.Shape()[2], 224);
  148. }
  149. TEST_F(MindDataTestExecute, TestTransformDecodeResizeCenterCrop1) {
  150. MS_LOG(INFO) << "Doing MindDataTestExecute-TestTransformDecodeResizeCenterCrop1.";
  151. // Test Execute with Decode, Resize and CenterCrop transform ops input using API constructors, with auto pointers
  152. // Read image
  153. std::shared_ptr<mindspore::dataset::Tensor> de_tensor;
  154. mindspore::dataset::Tensor::CreateFromFile("data/dataset/apple.jpg", &de_tensor);
  155. auto image = mindspore::MSTensor(std::make_shared<mindspore::dataset::DETensor>(de_tensor));
  156. // Define transform operations
  157. std::vector<int32_t> resize_paras = {256, 256};
  158. std::vector<int32_t> crop_paras = {224, 224};
  159. auto decode(new vision::Decode());
  160. auto resize(new vision::Resize(resize_paras));
  161. auto centercrop(new vision::CenterCrop(crop_paras));
  162. auto hwc2chw(new vision::HWC2CHW());
  163. std::vector<TensorTransform *> op_list = {decode, resize, centercrop, hwc2chw};
  164. mindspore::dataset::Execute Transform(op_list, MapTargetDevice::kCpu);
  165. // Apply transform on image
  166. Status rc = Transform(image, &image);
  167. // Check image info
  168. ASSERT_TRUE(rc.IsOk());
  169. ASSERT_EQ(image.Shape().size(), 3);
  170. ASSERT_EQ(image.Shape()[0], 3);
  171. ASSERT_EQ(image.Shape()[1], 224);
  172. ASSERT_EQ(image.Shape()[2], 224);
  173. }