|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869 |
- # Copyright 2019 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ==============================================================================
- """
- Testing RandomCropAndResize op in DE
- """
- import matplotlib.pyplot as plt
- import mindspore.dataset.transforms.vision.c_transforms as vision
- from mindspore import log as logger
-
- import mindspore.dataset as ds
-
- DATA_DIR = ["../data/dataset/test_tf_file_3_images/train-0000-of-0001.data"]
- SCHEMA_DIR = "../data/dataset/test_tf_file_3_images/datasetSchema.json"
-
-
- def visualize(a, mse, original):
- """
- visualizes the image using DE op and Numpy op
- """
- plt.subplot(141)
- plt.imshow(original)
- plt.title("Original image")
-
- plt.subplot(142)
- plt.imshow(a)
- plt.title("DE random_crop image")
-
- plt.subplot(143)
- plt.imshow(a - original)
- plt.title("Difference image, mse : {}".format(mse))
- plt.show()
-
-
- def test_random_crop_op():
- """
- Test RandomCropAndResize op
- """
- logger.info("test_random_crop_and_resize_op")
-
- # First dataset
- data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
- random_crop_op = vision.RandomCrop([512, 512], [200, 200, 200, 200])
- decode_op = vision.Decode()
- data1 = data1.map(input_columns=["image"], operations=decode_op)
- data1 = data1.map(input_columns=["image"], operations=random_crop_op)
-
- # Second dataset
- data2 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
- data2 = data2.map(input_columns=["image"], operations=decode_op)
-
- for item1, item2 in zip(data1.create_dict_iterator(), data2.create_dict_iterator()):
- image1 = item1["image"]
- image2 = item2["image"]
-
-
- if __name__ == "__main__":
- test_random_crop_op()
|