|
12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273 |
- # Copyright 2019 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ==============================================================================
- import mindspore.dataset.transforms.vision.c_transforms as vision
- import numpy as np
- import matplotlib.pyplot as plt
- import mindspore.dataset as ds
- from mindspore import log as logger
-
- DATA_DIR = ["../data/dataset/test_tf_file_3_images/train-0000-of-0001.data"]
- SCHEMA_DIR = "../data/dataset/test_tf_file_3_images/datasetSchema.json"
-
-
- def visualize(image_original, image_cropped):
- """
- visualizes the image using DE op and Numpy op
- """
- num = len(image_cropped)
- for i in range(num):
- plt.subplot(2, num, i + 1)
- plt.imshow(image_original[i])
- plt.title("Original image")
-
- plt.subplot(2, num, i + num + 1)
- plt.imshow(image_cropped[i])
- plt.title("DE center_crop image")
-
- plt.show()
-
-
- def test_center_crop_op(height=375, width=375, plot=False):
- """
- Test random_vertical
- """
- logger.info("Test CenterCrop")
-
- # First dataset
- data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"])
- decode_op = vision.Decode()
- # 3 images [375, 500] [600, 500] [512, 512]
- center_crop_op = vision.CenterCrop(height, width)
- data1 = data1.map(input_columns=["image"], operations=decode_op)
- data1 = data1.map(input_columns=["image"], operations=center_crop_op)
-
- # Second dataset
- data2 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"])
- data2 = data2.map(input_columns=["image"], operations=decode_op)
-
- image_cropped = []
- image = []
- for item1, item2 in zip(data1.create_dict_iterator(), data2.create_dict_iterator()):
- image_cropped.append(item1["image"].copy())
- image.append(item2["image"].copy())
- if plot:
- visualize(image, image_cropped)
-
-
- if __name__ == "__main__":
- test_center_crop_op()
- test_center_crop_op(600, 600)
- test_center_crop_op(300, 600)
- test_center_crop_op(600, 300)
|