You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

train.py 6.1 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132
  1. # Copyright 2020 Huawei Technologies Co., Ltd
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. # ============================================================================
  15. """train_imagenet."""
  16. import argparse
  17. import os
  18. import random
  19. import numpy as np
  20. from mindspore import Tensor
  21. from mindspore import context
  22. from mindspore.communication.management import init
  23. from mindspore.parallel._auto_parallel_context import auto_parallel_context
  24. from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, LossMonitor, TimeMonitor
  25. from mindspore.train.loss_scale_manager import FixedLossScaleManager
  26. from mindspore.train.model import ParallelMode
  27. from src.model_thor import Model
  28. from src.resnet_thor import resnet50
  29. from src.thor import THOR
  30. from src.config import config
  31. from src.crossentropy import CrossEntropy
  32. from src.dataset_imagenet import create_dataset
  33. random.seed(1)
  34. np.random.seed(1)
  35. parser = argparse.ArgumentParser(description='Image classification')
  36. parser.add_argument('--run_distribute', type=bool, default=False, help='Run distribute')
  37. parser.add_argument('--device_num', type=int, default=1, help='Device num.')
  38. parser.add_argument('--do_train', type=bool, default=True, help='Do train or not.')
  39. parser.add_argument('--do_eval', type=bool, default=False, help='Do eval or not.')
  40. parser.add_argument('--dataset_path', type=str, default=None, help='Dataset path')
  41. args_opt = parser.parse_args()
  42. device_id = int(os.getenv('DEVICE_ID'))
  43. context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", save_graphs=False, device_id=device_id)
  44. def get_model_lr(global_step, lr_init, decay, total_epochs, steps_per_epoch):
  45. """get_model_lr"""
  46. lr_each_step = []
  47. total_steps = steps_per_epoch * total_epochs
  48. for i in range(total_steps):
  49. epoch = (i + 1) / steps_per_epoch
  50. base = (1.0 - float(epoch) / total_epochs) ** decay
  51. lr_local = lr_init * base
  52. if epoch >= 39:
  53. lr_local = lr_local * 0.5
  54. if epoch >= 40:
  55. lr_local = lr_local * 0.5
  56. lr_each_step.append(lr_local)
  57. current_step = global_step
  58. lr_each_step = np.array(lr_each_step).astype(np.float32)
  59. learning_rate = lr_each_step[current_step:]
  60. return learning_rate
  61. def get_model_damping(global_step, damping_init, decay_rate, total_epochs, steps_per_epoch):
  62. """get_model_damping"""
  63. damping_each_step = []
  64. total_steps = steps_per_epoch * total_epochs
  65. for step in range(total_steps):
  66. epoch = (step + 1) / steps_per_epoch
  67. damping_here = damping_init * (decay_rate ** (epoch / 10))
  68. damping_each_step.append(damping_here)
  69. current_step = global_step
  70. damping_each_step = np.array(damping_each_step).astype(np.float32)
  71. damping_now = damping_each_step[current_step:]
  72. return damping_now
  73. if __name__ == '__main__':
  74. if not args_opt.do_eval and args_opt.run_distribute:
  75. context.set_auto_parallel_context(device_num=args_opt.device_num, parallel_mode=ParallelMode.DATA_PARALLEL,
  76. mirror_mean=True, parameter_broadcast=True)
  77. auto_parallel_context().set_all_reduce_fusion_split_indices([107], "hccl_world_groupsum1")
  78. auto_parallel_context().set_all_reduce_fusion_split_indices([27], "hccl_world_groupsum2")
  79. auto_parallel_context().set_all_reduce_fusion_split_indices([27], "hccl_world_groupsum3")
  80. auto_parallel_context().set_all_reduce_fusion_split_indices([27], "hccl_world_groupsum4")
  81. auto_parallel_context().set_all_reduce_fusion_split_indices([27], "hccl_world_groupsum5")
  82. init()
  83. epoch_size = config.epoch_size
  84. damping = get_model_damping(0, 0.03, 0.87, 50, 5004)
  85. net = resnet50(class_num=config.class_num, damping=damping, loss_scale=config.loss_scale,
  86. frequency=config.frequency)
  87. if not config.label_smooth:
  88. config.label_smooth_factor = 0.0
  89. loss = CrossEntropy(smooth_factor=config.label_smooth_factor, num_classes=config.class_num)
  90. if args_opt.do_train:
  91. dataset = create_dataset(dataset_path=args_opt.dataset_path, do_train=True,
  92. repeat_num=epoch_size, batch_size=config.batch_size)
  93. step_size = dataset.get_dataset_size()
  94. loss_scale = FixedLossScaleManager(config.loss_scale, drop_overflow_update=False)
  95. lr = Tensor(get_model_lr(0, 0.045, 6, 70, 5004))
  96. opt = THOR(filter(lambda x: x.requires_grad, net.get_parameters()), lr, config.momentum,
  97. filter(lambda x: 'matrix_A' in x.name, net.get_parameters()),
  98. filter(lambda x: 'matrix_G' in x.name, net.get_parameters()),
  99. filter(lambda x: 'A_inv_max' in x.name, net.get_parameters()),
  100. filter(lambda x: 'G_inv_max' in x.name, net.get_parameters()),
  101. config.weight_decay, config.loss_scale)
  102. model = Model(net, loss_fn=loss, optimizer=opt, amp_level='O2', loss_scale_manager=loss_scale,
  103. keep_batchnorm_fp32=False, metrics={'acc'}, frequency=config.frequency)
  104. time_cb = TimeMonitor(data_size=step_size)
  105. loss_cb = LossMonitor()
  106. cb = [time_cb, loss_cb]
  107. if config.save_checkpoint:
  108. config_ck = CheckpointConfig(save_checkpoint_steps=config.save_checkpoint_steps,
  109. keep_checkpoint_max=config.keep_checkpoint_max)
  110. ckpt_cb = ModelCheckpoint(prefix="resnet", directory=config.save_checkpoint_path, config=config_ck)
  111. cb += [ckpt_cb]
  112. model.train(epoch_size, dataset, callbacks=cb)