|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153 |
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
- """Train Resnet50 on ImageNet"""
-
- import os
- import argparse
-
- from mindspore import context
- from mindspore import Tensor
- from mindspore.parallel._auto_parallel_context import auto_parallel_context
- from mindspore.nn.optim.momentum import Momentum
- from mindspore.train.model import Model, ParallelMode
- from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, LossMonitor, TimeMonitor
- from mindspore.train.loss_scale_manager import FixedLossScaleManager
- from mindspore.train.serialization import load_checkpoint
- from mindspore.train.quant import quant
- from mindspore.communication.management import init
- import mindspore.nn as nn
- import mindspore.common.initializer as weight_init
-
- from models.resnet_quant import resnet50_quant
- from src.dataset import create_dataset
- from src.lr_generator import get_lr
- from src.config import quant_set, config_quant, config_noquant
- from src.crossentropy import CrossEntropy
- from src.utils import _load_param_into_net
-
- parser = argparse.ArgumentParser(description='Image classification')
- parser.add_argument('--run_distribute', type=bool, default=False, help='Run distribute')
- parser.add_argument('--device_num', type=int, default=1, help='Device num.')
- parser.add_argument('--dataset_path', type=str, default=None, help='Dataset path')
- parser.add_argument('--device_target', type=str, default='Ascend', help='Device target')
- parser.add_argument('--pre_trained', type=str, default=None, help='Pertained checkpoint path')
- args_opt = parser.parse_args()
- config = config_quant if quant_set.quantization_aware else config_noquant
-
- if args_opt.device_target == "Ascend":
- device_id = int(os.getenv('DEVICE_ID'))
- rank_id = int(os.getenv('RANK_ID'))
- rank_size = int(os.getenv('RANK_SIZE'))
- run_distribute = rank_size > 1
- context.set_context(mode=context.GRAPH_MODE,
- device_target="Ascend",
- save_graphs=False,
- device_id=device_id,
- enable_auto_mixed_precision=True)
- else:
- raise ValueError("Unsupported device target.")
-
- if __name__ == '__main__':
- # train on ascend
- print("training args: {}".format(args_opt))
- print("training configure: {}".format(config))
- print("parallel args: rank_id {}, device_id {}, rank_size {}".format(rank_id, device_id, rank_size))
- epoch_size = config.epoch_size
-
- # distribute init
- if run_distribute:
- context.set_auto_parallel_context(device_num=rank_size,
- parallel_mode=ParallelMode.DATA_PARALLEL,
- parameter_broadcast=True,
- mirror_mean=True)
- init()
- context.set_auto_parallel_context(device_num=args_opt.device_num,
- parallel_mode=ParallelMode.DATA_PARALLEL,
- mirror_mean=True)
- auto_parallel_context().set_all_reduce_fusion_split_indices([107, 160])
-
- # define network
- net = resnet50_quant(class_num=config.class_num)
- net.set_train(True)
-
- # weight init and load checkpoint file
- if args_opt.pre_trained:
- param_dict = load_checkpoint(args_opt.pre_trained)
- _load_param_into_net(net, param_dict)
- epoch_size = config.epoch_size - config.pretrained_epoch_size
- else:
- for _, cell in net.cells_and_names():
- if isinstance(cell, nn.Conv2d):
- cell.weight.default_input = weight_init.initializer(weight_init.XavierUniform(),
- cell.weight.default_input.shape,
- cell.weight.default_input.dtype).to_tensor()
- if isinstance(cell, nn.Dense):
- cell.weight.default_input = weight_init.initializer(weight_init.TruncatedNormal(),
- cell.weight.default_input.shape,
- cell.weight.default_input.dtype).to_tensor()
- if not config.use_label_smooth:
- config.label_smooth_factor = 0.0
- loss = CrossEntropy(smooth_factor=config.label_smooth_factor, num_classes=config.class_num)
- loss_scale = FixedLossScaleManager(config.loss_scale, drop_overflow_update=False)
-
- # define dataset
- dataset = create_dataset(dataset_path=args_opt.dataset_path,
- do_train=True,
- repeat_num=epoch_size,
- batch_size=config.batch_size,
- target=args_opt.device_target)
- step_size = dataset.get_dataset_size()
-
- if quant_set.quantization_aware:
- # convert fusion network to quantization aware network
- net = quant.convert_quant_network(net, bn_fold=True, per_channel=[True, False], symmetric=[True, False])
-
- # get learning rate
- lr = get_lr(lr_init=config.lr_init,
- lr_end=0.0,
- lr_max=config.lr_max,
- warmup_epochs=config.warmup_epochs,
- total_epochs=config.epoch_size,
- steps_per_epoch=step_size,
- lr_decay_mode='cosine')
- if args_opt.pre_trained:
- lr = lr[config.pretrained_epoch_size * step_size:]
- lr = Tensor(lr)
-
- # define optimization
- opt = Momentum(filter(lambda x: x.requires_grad, net.get_parameters()), lr, config.momentum,
- config.weight_decay, config.loss_scale)
-
- # define model
- if quant_set.quantization_aware:
- model = Model(net, loss_fn=loss, optimizer=opt, loss_scale_manager=loss_scale, metrics={'acc'})
- else:
- model = Model(net, loss_fn=loss, optimizer=opt, loss_scale_manager=loss_scale, metrics={'acc'},
- amp_level="O2")
-
- print("============== Starting Training ==============")
- time_callback = TimeMonitor(data_size=step_size)
- loss_callback = LossMonitor()
- callbacks = [time_callback, loss_callback]
- if rank_id == 0:
- if config.save_checkpoint:
- config_ckpt = CheckpointConfig(save_checkpoint_steps=config.save_checkpoint_epochs * step_size,
- keep_checkpoint_max=config.keep_checkpoint_max)
- ckpt_callback = ModelCheckpoint(prefix="ResNet50",
- directory=config.save_checkpoint_path,
- config=config_ckpt)
- callbacks += [ckpt_callback]
- model.train(epoch_size, dataset, callbacks=callbacks)
- print("============== End Training ==============")
|