You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

train.py 8.0 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162
  1. # Copyright 2020 Huawei Technologies Co., Ltd
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. # ============================================================================
  15. """train resnet."""
  16. import os
  17. import random
  18. import argparse
  19. import numpy as np
  20. from mindspore import context
  21. from mindspore import Tensor
  22. from mindspore import dataset as de
  23. from mindspore.parallel._auto_parallel_context import auto_parallel_context
  24. from mindspore.nn.optim.momentum import Momentum
  25. from mindspore.train.model import Model, ParallelMode
  26. from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, LossMonitor, TimeMonitor
  27. from mindspore.nn.loss import SoftmaxCrossEntropyWithLogits
  28. from mindspore.train.loss_scale_manager import FixedLossScaleManager
  29. from mindspore.train.serialization import load_checkpoint, load_param_into_net
  30. from mindspore.communication.management import init, get_rank, get_group_size
  31. import mindspore.nn as nn
  32. import mindspore.common.initializer as weight_init
  33. from src.lr_generator import get_lr, warmup_cosine_annealing_lr
  34. from src.crossentropy import CrossEntropy
  35. parser = argparse.ArgumentParser(description='Image classification')
  36. parser.add_argument('--net', type=str, default=None, help='Resnet Model, either resnet50 or resnet101')
  37. parser.add_argument('--dataset', type=str, default=None, help='Dataset, either cifar10 or imagenet2012')
  38. parser.add_argument('--run_distribute', type=bool, default=False, help='Run distribute')
  39. parser.add_argument('--device_num', type=int, default=1, help='Device num.')
  40. parser.add_argument('--dataset_path', type=str, default=None, help='Dataset path')
  41. parser.add_argument('--device_target', type=str, default='Ascend', help='Device target')
  42. parser.add_argument('--pre_trained', type=str, default=None, help='Pretrained checkpoint path')
  43. args_opt = parser.parse_args()
  44. random.seed(1)
  45. np.random.seed(1)
  46. de.config.set_seed(1)
  47. if args_opt.net == "resnet50":
  48. from src.resnet import resnet50 as resnet
  49. if args_opt.dataset == "cifar10":
  50. from src.config import config1 as config
  51. from src.dataset import create_dataset1 as create_dataset
  52. else:
  53. from src.config import config2 as config
  54. from src.dataset import create_dataset2 as create_dataset
  55. else:
  56. from src.resnet import resnet101 as resnet
  57. from src.config import config3 as config
  58. from src.dataset import create_dataset3 as create_dataset
  59. if __name__ == '__main__':
  60. target = args_opt.device_target
  61. ckpt_save_dir = config.save_checkpoint_path
  62. # init context
  63. context.set_context(mode=context.GRAPH_MODE, device_target=target, save_graphs=False)
  64. if args_opt.run_distribute:
  65. if target == "Ascend":
  66. device_id = int(os.getenv('DEVICE_ID'))
  67. context.set_context(device_id=device_id, enable_auto_mixed_precision=True)
  68. context.set_auto_parallel_context(device_num=args_opt.device_num, parallel_mode=ParallelMode.DATA_PARALLEL,
  69. mirror_mean=True)
  70. if args_opt.net == "resnet50":
  71. auto_parallel_context().set_all_reduce_fusion_split_indices([107, 160])
  72. else:
  73. auto_parallel_context().set_all_reduce_fusion_split_indices([180, 313])
  74. init()
  75. # GPU target
  76. else:
  77. init("nccl")
  78. context.set_auto_parallel_context(device_num=get_group_size(), parallel_mode=ParallelMode.DATA_PARALLEL,
  79. mirror_mean=True)
  80. ckpt_save_dir = config.save_checkpoint_path + "ckpt_" + str(get_rank()) + "/"
  81. # create dataset
  82. if args_opt.net == "resnet50":
  83. dataset = create_dataset(dataset_path=args_opt.dataset_path, do_train=True, repeat_num=config.epoch_size,
  84. batch_size=config.batch_size, target=target)
  85. else:
  86. dataset = create_dataset(dataset_path=args_opt.dataset_path, do_train=True, repeat_num=config.epoch_size,
  87. batch_size=config.batch_size)
  88. step_size = dataset.get_dataset_size()
  89. # define net
  90. net = resnet(class_num=config.class_num)
  91. # init weight
  92. if args_opt.pre_trained:
  93. param_dict = load_checkpoint(args_opt.pre_trained)
  94. load_param_into_net(net, param_dict)
  95. else:
  96. for _, cell in net.cells_and_names():
  97. if isinstance(cell, nn.Conv2d):
  98. cell.weight.default_input = weight_init.initializer(weight_init.XavierUniform(),
  99. cell.weight.default_input.shape,
  100. cell.weight.default_input.dtype).to_tensor()
  101. if isinstance(cell, nn.Dense):
  102. cell.weight.default_input = weight_init.initializer(weight_init.TruncatedNormal(),
  103. cell.weight.default_input.shape,
  104. cell.weight.default_input.dtype).to_tensor()
  105. # init lr
  106. if args_opt.net == "resnet50":
  107. if args_opt.dataset == "cifar10":
  108. lr = get_lr(lr_init=config.lr_init, lr_end=config.lr_end, lr_max=config.lr_max,
  109. warmup_epochs=config.warmup_epochs, total_epochs=config.epoch_size, steps_per_epoch=step_size,
  110. lr_decay_mode='poly')
  111. else:
  112. lr = get_lr(lr_init=config.lr_init, lr_end=0.0, lr_max=config.lr_max, warmup_epochs=config.warmup_epochs,
  113. total_epochs=config.epoch_size, steps_per_epoch=step_size, lr_decay_mode='cosine')
  114. else:
  115. lr = warmup_cosine_annealing_lr(config.lr, step_size, config.warmup_epochs, 120,
  116. config.pretrain_epoch_size * step_size)
  117. lr = Tensor(lr)
  118. # define opt
  119. opt = Momentum(filter(lambda x: x.requires_grad, net.get_parameters()), lr, config.momentum,
  120. config.weight_decay, config.loss_scale)
  121. # define loss, model
  122. if target == "Ascend":
  123. if args_opt.dataset == "imagenet2012":
  124. if not config.use_label_smooth:
  125. config.label_smooth_factor = 0.0
  126. loss = CrossEntropy(smooth_factor=config.label_smooth_factor, num_classes=config.class_num)
  127. else:
  128. loss = SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean')
  129. loss_scale = FixedLossScaleManager(config.loss_scale, drop_overflow_update=False)
  130. model = Model(net, loss_fn=loss, optimizer=opt, loss_scale_manager=loss_scale, metrics={'acc'},
  131. amp_level="O2", keep_batchnorm_fp32=False)
  132. else:
  133. # GPU target
  134. loss = SoftmaxCrossEntropyWithLogits(sparse=True, is_grad=False, reduction='mean')
  135. opt = Momentum(filter(lambda x: x.requires_grad, net.get_parameters()), lr, config.momentum)
  136. model = Model(net, loss_fn=loss, optimizer=opt, metrics={'acc'})
  137. # define callbacks
  138. time_cb = TimeMonitor(data_size=step_size)
  139. loss_cb = LossMonitor()
  140. cb = [time_cb, loss_cb]
  141. if config.save_checkpoint:
  142. config_ck = CheckpointConfig(save_checkpoint_steps=config.save_checkpoint_epochs * step_size,
  143. keep_checkpoint_max=config.keep_checkpoint_max)
  144. ckpt_cb = ModelCheckpoint(prefix="resnet", directory=ckpt_save_dir, config=config_ck)
  145. cb += [ckpt_cb]
  146. # train model
  147. model.train(config.epoch_size, dataset, callbacks=cb)