|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990 |
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
- """train resnet."""
- import os
- import random
- import argparse
- import numpy as np
- from mindspore import context
- from mindspore import dataset as de
- from mindspore.nn.loss import SoftmaxCrossEntropyWithLogits
- from mindspore.train.model import Model
- from mindspore.train.serialization import load_checkpoint, load_param_into_net
- from src.crossentropy import CrossEntropy
-
- parser = argparse.ArgumentParser(description='Image classification')
- parser.add_argument('--net', type=str, default=None, help='Resnet Model, either resnet50 or resnet101')
- parser.add_argument('--dataset', type=str, default=None, help='Dataset, either cifar10 or imagenet2012')
-
- parser.add_argument('--checkpoint_path', type=str, default=None, help='Checkpoint file path')
- parser.add_argument('--dataset_path', type=str, default=None, help='Dataset path')
- parser.add_argument('--device_target', type=str, default='Ascend', help='Device target')
- args_opt = parser.parse_args()
-
- random.seed(1)
- np.random.seed(1)
- de.config.set_seed(1)
-
- if args_opt.net == "resnet50":
- from src.resnet import resnet50 as resnet
-
- if args_opt.dataset == "cifar10":
- from src.config import config1 as config
- from src.dataset import create_dataset1 as create_dataset
- else:
- from src.config import config2 as config
- from src.dataset import create_dataset2 as create_dataset
- else:
- from src.resnet import resnet101 as resnet
- from src.config import config3 as config
- from src.dataset import create_dataset3 as create_dataset
-
- if __name__ == '__main__':
- target = args_opt.device_target
-
- # init context
- device_id = int(os.getenv('DEVICE_ID'))
- context.set_context(mode=context.GRAPH_MODE, device_target=target, save_graphs=False, device_id=device_id)
-
- # create dataset
- if args_opt.net == "resnet50":
- dataset = create_dataset(dataset_path=args_opt.dataset_path, do_train=False, batch_size=config.batch_size,
- target=target)
- else:
- dataset = create_dataset(dataset_path=args_opt.dataset_path, do_train=False, batch_size=config.batch_size)
- step_size = dataset.get_dataset_size()
-
- # define net
- net = resnet(class_num=config.class_num)
-
- # load checkpoint
- param_dict = load_checkpoint(args_opt.checkpoint_path)
- load_param_into_net(net, param_dict)
- net.set_train(False)
-
- # define loss, model
- if args_opt.dataset == "imagenet2012":
- if not config.use_label_smooth:
- config.label_smooth_factor = 0.0
- loss = CrossEntropy(smooth_factor=config.label_smooth_factor, num_classes=config.class_num)
- else:
- loss = SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean')
-
- # define model
- model = Model(net, loss_fn=loss, metrics={'top_1_accuracy', 'top_5_accuracy'})
-
- # eval model
- res = model.eval(dataset)
- print("result:", res, "ckpt=", args_opt.checkpoint_path)
|