|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251 |
- # ResNet Example
-
- ## Description
-
- These are examples of training ResNet-50/ResNet-101 with CIFAR-10/ImageNet2012 dataset in MindSpore.
- (Training ResNet-101 with dataset CIFAR-10 is unsupported now.)
-
- ## Requirements
-
- - Install [MindSpore](https://www.mindspore.cn/install/en).
-
- - Download the dataset CIFAR-10 or ImageNet2012
-
- CIFAR-10
-
- > Unzip the CIFAR-10 dataset to any path you want and the folder structure should include train and eval dataset as follows:
- > ```
- > .
- > └─dataset
- > ├─ cifar-10-batches-bin # train dataset
- > └─ cifar-10-verify-bin # evaluate dataset
- > ```
-
- ImageNet2012
-
- > Unzip the ImageNet2012 dataset to any path you want and the folder should include train and eval dataset as follows:
- >
- > ```
- > .
- > └─dataset
- > ├─ilsvrc # train dataset
- > └─validation_preprocess # evaluate dataset
- > ```
-
-
-
- ## Structure
-
- ```shell
- .
- └──resnet
- ├── README.md
- ├── script
- ├── run_distribute_train.sh # launch distributed training(8 pcs)
- ├── run_eval.sh # launch evaluation
- └── run_standalone_train.sh # launch standalone training(1 pcs)
- ├── src
- ├── config.py # parameter configuration
- ├── dataset.py # data preprocessing
- ├── crossentropy.py # loss definition for ImageNet2012 dataset
- ├── lr_generator.py # generate learning rate for each step
- └── resnet.py # resnet backbone, including resnet50 and resnet101
- ├── eval.py # eval net
- └── train.py # train net
- ```
-
-
- ## Parameter configuration
-
- Parameters for both training and evaluation can be set in config.py.
-
- - config for ResNet-50, CIFAR-10 dataset
-
- ```
- "class_num": 10, # dataset class num
- "batch_size": 32, # batch size of input tensor
- "loss_scale": 1024, # loss scale
- "momentum": 0.9, # momentum
- "weight_decay": 1e-4, # weight decay
- "epoch_size": 90, # only valid for taining, which is always 1 for inference
- "save_checkpoint": True, # whether save checkpoint or not
- "save_checkpoint_steps": 195, # the step interval between two checkpoints. By default, the last checkpoint will be saved after the last step
- "keep_checkpoint_max": 10, # only keep the last keep_checkpoint_max checkpoint
- "save_checkpoint_path": "./", # path to save checkpoint
- "warmup_epochs": 5, # number of warmup epoch
- "lr_decay_mode": "poly" # decay mode can be selected in steps, ploy and default
- "lr_init": 0.01, # initial learning rate
- "lr_end": 0.00001, # final learning rate
- "lr_max": 0.1, # maximum learning rate
- ```
-
- - config for ResNet-50, ImageNet2012 dataset
-
- ```
- "class_num": 1001, # dataset class number
- "batch_size": 32, # batch size of input tensor
- "loss_scale": 1024, # loss scale
- "momentum": 0.9, # momentum optimizer
- "weight_decay": 1e-4, # weight decay
- "epoch_size": 90, # only valid for taining, which is always 1 for inference
- "pretrained_epoch_size": 1, # epoch size that model has been trained before load pretrained checkpoint
- "save_checkpoint": True, # whether save checkpoint or not
- "save_checkpoint_epochs": 1, # the epoch interval between two checkpoints. By default, the last checkpoint will be saved after the last epoch
- "keep_checkpoint_max": 10, # only keep the last keep_checkpoint_max checkpoint
- "save_checkpoint_path": "./", # path to save checkpoint relative to the executed path
- "warmup_epochs": 0, # number of warmup epoch
- "lr_decay_mode": "cosine", # decay mode for generating learning rate
- "label_smooth": True, # label smooth
- "label_smooth_factor": 0.1, # label smooth factor
- "lr_init": 0, # initial learning rate
- "lr_max": 0.1, # maximum learning rate
- ```
-
- - config for ResNet-101, ImageNet2012 dataset
-
- ```
- "class_num": 1001, # dataset class number
- "batch_size": 32, # batch size of input tensor
- "loss_scale": 1024, # loss scale
- "momentum": 0.9, # momentum optimizer
- "weight_decay": 1e-4, # weight decay
- "epoch_size": 120, # epoch sizes for training
- "pretrain_epoch_size": 0, # epoch size of pretrain checkpoint
- "save_checkpoint": True, # whether save checkpoint or not
- "save_checkpoint_epochs": 1, # the epoch interval between two checkpoints. By default, the last checkpoint will be saved after the last epoch
- "keep_checkpoint_max": 10, # only keep the last keep_checkpoint_max checkpoint
- "save_checkpoint_path": "./", # path to save checkpoint relative to the executed path
- "warmup_epochs": 0, # number of warmup epoch
- "lr_decay_mode": "cosine" # decay mode for generating learning rate
- "label_smooth": 1, # label_smooth
- "label_smooth_factor": 0.1, # label_smooth_factor
- "lr": 0.1 # base learning rate
- ```
-
-
-
- ## Running the example
-
- ### Train
-
- #### Usage
-
- ```
- # distributed training
- Usage: sh run_distribute_train.sh [resnet50|resnet101] [cifar10|imagenet2012] [MINDSPORE_HCCL_CONFIG_PATH] [DATASET_PATH]
- [PRETRAINED_CKPT_PATH](optional)
-
- # standalone training
- Usage: sh run_standalone_train.sh [resnet50|resnet101] [cifar10|imagenet2012] [DATASET_PATH]
- [PRETRAINED_CKPT_PATH](optional)
- ```
-
-
- #### Launch
-
- ```
- # distribute training example
- sh run_distribute_train.sh resnet50 cifar10 rank_table.json ~/cifar-10-batches-bin
-
- # standalone training example
- sh run_standalone_train.sh resnet50 cifar10 ~/cifar-10-batches-bin
- ```
-
- > About rank_table.json, you can refer to the [distributed training tutorial](https://www.mindspore.cn/tutorial/en/master/advanced_use/distributed_training.html).
-
- #### Result
-
- Training result will be stored in the example path, whose folder name begins with "train" or "train_parallel". Under this, you can find checkpoint file together with result like the followings in log.
-
- - training ResNet-50 with CIFAR-10 dataset
-
- ```
- # distribute training result(8 pcs)
- epoch: 1 step: 195, loss is 1.9601055
- epoch: 2 step: 195, loss is 1.8555021
- epoch: 3 step: 195, loss is 1.6707983
- epoch: 4 step: 195, loss is 1.8162166
- epoch: 5 step: 195, loss is 1.393667
- ...
- ```
-
- - training ResNet-50 with ImageNet2012 dataset
-
- ```
- # distribute training result(8 pcs)
- epoch: 1 step: 5004, loss is 4.8995576
- epoch: 2 step: 5004, loss is 3.9235563
- epoch: 3 step: 5004, loss is 3.833077
- epoch: 4 step: 5004, loss is 3.2795618
- epoch: 5 step: 5004, loss is 3.1978393
- ...
- ```
-
- - training ResNet-101 with ImageNet2012 dataset
-
- ```
- # distribute training result(8p)
- epoch: 1 step: 5004, loss is 4.805483
- epoch: 2 step: 5004, loss is 3.2121816
- epoch: 3 step: 5004, loss is 3.429647
- epoch: 4 step: 5004, loss is 3.3667371
- epoch: 5 step: 5004, loss is 3.1718972
- ...
- epoch: 67 step: 5004, loss is 2.2768745
- epoch: 68 step: 5004, loss is 1.7223864
- epoch: 69 step: 5004, loss is 2.0665488
- epoch: 70 step: 5004, loss is 1.8717369
- ...
- ```
-
- ### Evaluation
-
- #### Usage
-
- ```
- # evaluation
- Usage: sh run_eval.sh [resnet50|resnet101] [cifar10|imagenet2012] [DATASET_PATH] [CHECKPOINT_PATH]
- ```
-
- #### Launch
-
- ```
- # evaluation example
- sh run_eval.sh resnet50 cifar10 ~/cifar10-10-verify-bin ~/resnet50_cifar10/train_parallel0/resnet-90_195.ckpt
- ```
-
- > checkpoint can be produced in training process.
-
- #### Result
-
- Evaluation result will be stored in the example path, whose folder name is "eval". Under this, you can find result like the followings in log.
-
- - evaluating ResNet-50 with CIFAR-10 dataset
-
- ```
- result: {'acc': 0.91446314102564111} ckpt=~/resnet50_cifar10/train_parallel0/resnet-90_195.ckpt
- ```
-
- - evaluating ResNet-50 with ImageNet2012 dataset
-
- ```
- result: {'acc': 0.7671054737516005} ckpt=train_parallel0/resnet-90_5004.ckpt
- ```
-
- - evaluating ResNet-101 with ImageNet2012 dataset
-
- ```
- result: {'top_5_accuracy': 0.9429417413572343, 'top_1_accuracy': 0.7853513124199744} ckpt=train_parallel0/resnet-120_5004.ckpt
- ```
-
- ### Running on GPU
- ```
- # distributed training example
- mpirun -n 8 python train.py ---net=resnet50 --dataset=cifar10 -dataset_path=~/cifar-10-batches-bin --device_target="GPU" --run_distribute=True
-
- # standalone training example
- python train.py --net=resnet50 --dataset=cifar10 --dataset_path=~/cifar-10-batches-bin --device_target="GPU"
-
- # infer example
- python eval.py --net=resnet50 --dataset=cifar10 --dataset_path=~/cifar10-10-verify-bin --device_target="GPU" --checkpoint_path=resnet-90_195.ckpt
- ```
|