You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

export.py 2.5 kB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556
  1. # Copyright 2020 Huawei Technologies Co., Ltd
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. # ============================================================================
  15. """
  16. export quantization aware training network to infer `GEIR` backend.
  17. """
  18. import argparse
  19. import numpy as np
  20. import mindspore
  21. from mindspore import Tensor
  22. from mindspore import context
  23. from mindspore.train.quant import quant
  24. from mindspore.train.serialization import load_checkpoint, load_param_into_net
  25. from src.config import mnist_cfg as cfg
  26. from src.lenet_fusion import LeNet5 as LeNet5Fusion
  27. parser = argparse.ArgumentParser(description='MindSpore MNIST Example')
  28. parser.add_argument('--device_target', type=str, default="Ascend",
  29. choices=['Ascend', 'GPU'],
  30. help='device where the code will be implemented (default: Ascend)')
  31. parser.add_argument('--data_path', type=str, default="./MNIST_Data",
  32. help='path where the dataset is saved')
  33. parser.add_argument('--ckpt_path', type=str, default="",
  34. help='if mode is test, must provide path where the trained ckpt file')
  35. parser.add_argument('--dataset_sink_mode', type=bool, default=True,
  36. help='dataset_sink_mode is False or True')
  37. args = parser.parse_args()
  38. if __name__ == "__main__":
  39. context.set_context(mode=context.GRAPH_MODE, device_target=args.device_target)
  40. # define fusion network
  41. network = LeNet5Fusion(cfg.num_classes)
  42. # convert fusion network to quantization aware network
  43. network = quant.convert_quant_network(network, quant_delay=0, bn_fold=False, freeze_bn=10000)
  44. # load quantization aware network checkpoint
  45. param_dict = load_checkpoint(args.ckpt_path)
  46. load_param_into_net(network, param_dict)
  47. # export network
  48. inputs = Tensor(np.ones([1, 1, cfg.image_height, cfg.image_width]), mindspore.float32)
  49. quant.export(network, inputs, file_name="lenet_quant", file_format='GEIR')