You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

test_mul_op.py 4.5 kB

5 years ago
5 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132
  1. # Copyright 2019 Huawei Technologies Co., Ltd
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. # ============================================================================
  15. import numpy as np
  16. import pytest
  17. import mindspore.context as context
  18. import mindspore.nn as nn
  19. from mindspore import Tensor
  20. from mindspore.ops import operations as P
  21. class NetMul(nn.Cell):
  22. def __init__(self):
  23. super(NetMul, self).__init__()
  24. self.mul = P.Mul()
  25. def construct(self, x, y):
  26. return self.mul(x, y)
  27. @pytest.mark.level0
  28. @pytest.mark.platform_x86_gpu_training
  29. @pytest.mark.env_onecard
  30. def test_mul():
  31. x0_np = np.random.uniform(-2, 2, (2, 3, 4, 4)).astype(np.float32)
  32. y0_np = np.random.uniform(-2, 2, (2, 3, 4, 4)).astype(np.float32)
  33. x1_np = np.random.uniform(-2, 2, (2, 3, 4, 4)).astype(np.float32)
  34. y1_np = np.random.uniform(-2, 2, (2, 1, 4, 4)).astype(np.float32)
  35. x2_np = np.random.uniform(-2, 2, (2, 1, 1, 4)).astype(np.float32)
  36. y2_np = np.random.uniform(-2, 2, (2, 3, 4, 4)).astype(np.float32)
  37. x3_np = np.random.uniform(-2, 2, 1).astype(np.float32)
  38. y3_np = np.random.uniform(-2, 2, 1).astype(np.float32)
  39. x4_np = np.array(768).astype(np.float32)
  40. y4_np = np.array(3072.5).astype(np.float32)
  41. x0 = Tensor(x0_np)
  42. y0 = Tensor(y0_np)
  43. x1 = Tensor(x1_np)
  44. y1 = Tensor(y1_np)
  45. x2 = Tensor(x2_np)
  46. y2 = Tensor(y2_np)
  47. x3 = Tensor(x3_np)
  48. y3 = Tensor(y3_np)
  49. x4 = Tensor(x4_np)
  50. y4 = Tensor(y4_np)
  51. context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU")
  52. mul = NetMul()
  53. output0 = mul(x0, y0)
  54. expect0 = np.multiply(x0_np, y0_np)
  55. diff0 = output0.asnumpy() - expect0
  56. error0 = np.ones(shape=expect0.shape) * 1.0e-5
  57. assert np.all(diff0 < error0)
  58. assert output0.shape == expect0.shape
  59. output1 = mul(x1, y1)
  60. expect1 = np.multiply(x1_np, y1_np)
  61. diff1 = output1.asnumpy() - expect1
  62. error1 = np.ones(shape=expect1.shape) * 1.0e-5
  63. assert np.all(diff1 < error1)
  64. assert output1.shape == expect1.shape
  65. output2 = mul(x2, y2)
  66. expect2 = np.multiply(x2_np, y2_np)
  67. diff2 = output2.asnumpy() - expect2
  68. error2 = np.ones(shape=expect2.shape) * 1.0e-5
  69. assert np.all(diff2 < error2)
  70. assert output2.shape == expect2.shape
  71. output3 = mul(x3, y3)
  72. expect3 = np.multiply(x3_np, y3_np)
  73. diff3 = output3.asnumpy() - expect3
  74. error3 = np.ones(shape=expect3.shape) * 1.0e-5
  75. assert np.all(diff3 < error3)
  76. assert output3.shape == expect3.shape
  77. output4 = mul(x4, y4)
  78. expect4 = np.multiply(x4_np, y4_np)
  79. diff4 = output4.asnumpy() - expect4
  80. error4 = np.ones(shape=expect4.shape) * 1.0e-5
  81. assert np.all(diff4 < error4)
  82. assert output4.shape == expect4.shape
  83. context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
  84. mul = NetMul()
  85. output0 = mul(x0, y0)
  86. expect0 = np.multiply(x0_np, y0_np)
  87. diff0 = output0.asnumpy() - expect0
  88. error0 = np.ones(shape=expect0.shape) * 1.0e-5
  89. assert np.all(diff0 < error0)
  90. assert output0.shape == expect0.shape
  91. output1 = mul(x1, y1)
  92. expect1 = np.multiply(x1_np, y1_np)
  93. diff1 = output1.asnumpy() - expect1
  94. error1 = np.ones(shape=expect1.shape) * 1.0e-5
  95. assert np.all(diff1 < error1)
  96. assert output1.shape == expect1.shape
  97. output2 = mul(x2, y2)
  98. expect2 = np.multiply(x2_np, y2_np)
  99. diff2 = output2.asnumpy() - expect2
  100. error2 = np.ones(shape=expect2.shape) * 1.0e-5
  101. assert np.all(diff2 < error2)
  102. assert output2.shape == expect2.shape
  103. output3 = mul(x3, y3)
  104. expect3 = np.multiply(x3_np, y3_np)
  105. diff3 = output3.asnumpy() - expect3
  106. error3 = np.ones(shape=expect3.shape) * 1.0e-5
  107. assert np.all(diff3 < error3)
  108. assert output3.shape == expect3.shape
  109. output4 = mul(x4, y4)
  110. expect4 = np.multiply(x4_np, y4_np)
  111. diff4 = output4.asnumpy() - expect4
  112. error4 = np.ones(shape=expect4.shape) * 1.0e-5
  113. assert np.all(diff4 < error4)
  114. assert output4.shape == expect4.shape