You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

test_equalcount_op.py 1.7 kB

5 years ago
5 years ago
5 years ago
1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950
  1. # Copyright 2019 Huawei Technologies Co., Ltd
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. # ============================================================================
  15. import numpy as np
  16. import pytest
  17. import mindspore.context as context
  18. import mindspore.nn as nn
  19. from mindspore import Tensor
  20. from mindspore.ops import operations as P
  21. class NetEqualCount(nn.Cell):
  22. def __init__(self):
  23. super(NetEqualCount, self).__init__()
  24. self.equalcount = P.EqualCount()
  25. def construct(self, x, y):
  26. return self.equalcount(x, y)
  27. @pytest.mark.level0
  28. @pytest.mark.platform_x86_gpu_training
  29. @pytest.mark.env_onecard
  30. def test_equalcount():
  31. x = Tensor(np.array([1, 20, 5]).astype(np.int32))
  32. y = Tensor(np.array([2, 20, 5]).astype(np.int32))
  33. expect = np.array([2]).astype(np.int32)
  34. context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU")
  35. equal_count = NetEqualCount()
  36. output = equal_count(x, y)
  37. assert (output.asnumpy() == expect).all()
  38. context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
  39. equal_count = NetEqualCount()
  40. output = equal_count(x, y)
  41. assert (output.asnumpy() == expect).all()