You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

test_conv2d_depthwiseconv2d.py 2.2 kB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556
  1. # Copyright 2020 Huawei Technologies Co., Ltd
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. # ============================================================================
  15. import numpy as np
  16. import pytest
  17. import mindspore.nn as nn
  18. import mindspore.common.dtype as mstype
  19. from mindspore.common.initializer import Normal
  20. from mindspore import Tensor
  21. from mindspore import context
  22. context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
  23. @pytest.mark.level1
  24. @pytest.mark.platform_x86_gpu_training
  25. @pytest.mark.env_onecard
  26. def test_conv2d_depthwiseconv2d_str():
  27. net = nn.Conv2d(128, 128, (2, 3), stride=4, pad_mode='valid', padding=0, group=128, weight_init='normal')
  28. input_data = Tensor(np.ones([3, 128, 127, 114]), dtype=mstype.float32)
  29. output = net(input_data)
  30. assert output.shape == (3, 128, 32, 28)
  31. @pytest.mark.level1
  32. @pytest.mark.platform_x86_gpu_training
  33. @pytest.mark.env_onecard
  34. def test_conv2d_depthwiseconv2d_initializer():
  35. net = nn.Conv2d(128, 128, (2, 3), stride=4, pad_mode='valid', padding=0, group=128, weight_init=Normal())
  36. input_data = Tensor(np.ones([3, 128, 127, 114]), dtype=mstype.float32)
  37. output = net(input_data)
  38. assert output.shape == (3, 128, 32, 28)
  39. @pytest.mark.level1
  40. @pytest.mark.platform_x86_gpu_training
  41. @pytest.mark.env_onecard
  42. def test_conv2d_depthwiseconv2d_tensor():
  43. weight_init = Tensor(np.random.randn(128, 1, 2, 3).astype(np.float32))
  44. net = nn.Conv2d(128, 128, (2, 3), stride=4, pad_mode='valid', padding=0, group=128, weight_init=weight_init)
  45. input_data = Tensor(np.ones([3, 128, 127, 114]), dtype=mstype.float32)
  46. output = net(input_data)
  47. assert output.shape == (3, 128, 32, 28)