|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142 |
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
-
- import numpy as np
- import pytest
-
- import mindspore.context as context
- import mindspore.nn as nn
- from mindspore import Tensor
- from mindspore.common import dtype as mstype
- from mindspore.ops import operations as P
-
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.env_onecard
- class BatchMatMulNet(nn.Cell):
- def __init__(self, transpose_a=False, transpose_b=False):
- super(BatchMatMulNet, self).__init__()
- self.batch_matmul = P.BatchMatMul(transpose_a, transpose_b)
-
- def construct(self, x, y):
- return self.batch_matmul(x, y)
-
-
- def test_4d():
- input_x = Tensor(np.arange(2 * 4 * 1 * 3).reshape(2, 4, 1, 3), mstype.float32)
- input_y = Tensor(np.arange(2 * 4 * 3 * 4).reshape(2, 4, 3, 4), mstype.float32)
-
- context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
- net = BatchMatMulNet()
- output = net(input_x, input_y)
- expect = [[[[20, 23, 26, 29]],
- [[200, 212, 224, 236]],
- [[596, 617, 638, 659]],
- [[1208, 1238, 1268, 1298]]],
-
- [[[2036, 2075, 2114, 2153]],
- [[3080, 3128, 3176, 3224]],
- [[4340, 4397, 4454, 4511]],
- [[5816, 5882, 5948, 6014]]]]
- assert (output.asnumpy() == expect).all()
-
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.env_onecard
- def test_4d_transpose_a():
- input_x = Tensor(np.arange(2 * 4 * 3 * 1).reshape(2, 4, 3, 1), mstype.float32)
- input_y = Tensor(np.arange(2 * 4 * 3 * 4).reshape(2, 4, 3, 4), mstype.float32)
-
- context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
- net = BatchMatMulNet(transpose_a=True)
- output = net(input_x, input_y)
- expect = [[[[20, 23, 26, 29]],
- [[200, 212, 224, 236]],
- [[596, 617, 638, 659]],
- [[1208, 1238, 1268, 1298]]],
-
- [[[2036, 2075, 2114, 2153]],
- [[3080, 3128, 3176, 3224]],
- [[4340, 4397, 4454, 4511]],
- [[5816, 5882, 5948, 6014]]]]
- assert (output.asnumpy() == expect).all()
-
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.env_onecard
- def test_4d_transpose_b():
- input_x = Tensor(np.arange(2 * 4 * 1 * 3).reshape(2, 4, 1, 3), mstype.float32)
- input_y = Tensor(np.arange(2 * 4 * 4 * 3).reshape(2, 4, 4, 3), mstype.float32)
-
- context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
- net = BatchMatMulNet(transpose_b=True)
- output = net(input_x, input_y)
- expect = [[[[5, 14, 23, 32]],
- [[158, 194, 230, 266]],
- [[527, 590, 653, 716]],
- [[1112, 1202, 1292, 1382]]],
-
- [[[1913, 2030, 2147, 2264]],
- [[2930, 3074, 3218, 3362]],
- [[4163, 4334, 4505, 4676]],
- [[5612, 5810, 6008, 6206]]]]
- assert (output.asnumpy() == expect).all()
-
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.env_onecard
- def test_4d_transpose_ab():
- input_x = Tensor(np.arange(2 * 4 * 3 * 1).reshape(2, 4, 3, 1), mstype.float32)
- input_y = Tensor(np.arange(2 * 4 * 4 * 3).reshape(2, 4, 4, 3), mstype.float32)
-
- context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
- net = BatchMatMulNet(transpose_a=True, transpose_b=True)
- output = net(input_x, input_y)
- expect = [[[[5, 14, 23, 32]],
- [[158, 194, 230, 266]],
- [[527, 590, 653, 716]],
- [[1112, 1202, 1292, 1382]]],
-
- [[[1913, 2030, 2147, 2264]],
- [[2930, 3074, 3218, 3362]],
- [[4163, 4334, 4505, 4676]],
- [[5612, 5810, 6008, 6206]]]]
- assert (output.asnumpy() == expect).all()
-
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.env_onecard
- def test_4D_fp16():
- input_x = Tensor(np.arange(2 * 4 * 1 * 3).reshape(2, 4, 1, 3), mstype.float16)
- input_y = Tensor(np.arange(2 * 4 * 3 * 4).reshape(2, 4, 3, 4), mstype.float16)
-
- context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
- net = BatchMatMulNet()
- output = net(input_x, input_y)
- expect = np.array([[[[20, 23, 26, 29]],
- [[200, 212, 224, 236]],
- [[596, 617, 638, 659]],
- [[1208, 1238, 1268, 1298]]],
-
- [[[2036, 2076, 2114, 2152]],
- [[3080, 3128, 3176, 3224]],
- [[4340, 4396, 4456, 4510]],
- [[5816, 5880, 5948, 6016]]]]).astype(np.float16)
- assert (output.asnumpy() == expect).all()
|