You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

test_nn_matmul.py 3.2 kB

5 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104
  1. import numpy as np
  2. import mindspore.context as context
  3. import mindspore.nn as nn
  4. from mindspore import Tensor
  5. context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
  6. class Net(nn.Cell):
  7. def __init__(self, transpose_x1, transpose_x2):
  8. super(Net, self).__init__()
  9. self.matmul = nn.MatMul(transpose_x1, transpose_x2)
  10. def construct(self, x1, x2):
  11. return self.matmul(x1, x2)
  12. def test_x1_2D_x2_3D():
  13. x1 = np.random.randn(16, 64).astype(np.float32)
  14. x2 = np.random.randn(32, 64, 20).astype(np.float32)
  15. transpose_x1 = False
  16. transpose_x2 = False
  17. net = Net(transpose_x1, transpose_x2)
  18. output = net(Tensor(x1), Tensor(x2))
  19. assert output.shape == (32, 16, 20)
  20. def test_x1_4D_x2_3D_transpose_x2_True():
  21. x1 = np.random.randn(3, 2, 3, 4).astype(np.float32)
  22. x2 = np.random.randn(1, 5, 4).astype(np.float32)
  23. transpose_x1 = False
  24. transpose_x2 = True
  25. net = Net(transpose_x1, transpose_x2)
  26. output = net(Tensor(x1), Tensor(x2))
  27. assert output.shape == (3, 2, 3, 5)
  28. def test_x1_3D_transpose_x1_True_x2_2D():
  29. x1 = np.random.randn(2, 3, 4).astype(np.float32)
  30. x2 = np.random.randn(3, 4).astype(np.float32)
  31. transpose_x1 = True
  32. transpose_x2 = False
  33. net = Net(transpose_x1, transpose_x2)
  34. output = net(Tensor(x1), Tensor(x2))
  35. assert output.shape == (2, 4, 4)
  36. def test_x1_3D_transpose_x1_True_x2_3D_transpose_x2_True():
  37. x1 = np.random.randn(2, 5, 6).astype(np.float32)
  38. x2 = np.random.randn(2, 4, 5).astype(np.float32)
  39. transpose_x1 = True
  40. transpose_x2 = True
  41. net = Net(transpose_x1, transpose_x2)
  42. output = net(Tensor(x1), Tensor(x2))
  43. assert output.shape == (2, 6, 4)
  44. def test_x1_1D_x2_1D():
  45. x1 = np.random.randn(4).astype(np.float32)
  46. x2 = np.random.randn(4).astype(np.float32)
  47. transpose_x1 = False
  48. transpose_x2 = False
  49. net = Net(transpose_x1, transpose_x2)
  50. output = net(Tensor(x1), Tensor(x2))
  51. assert output.shape == ()
  52. def test_x1_1D_x2_3D():
  53. x1 = np.random.randn(4).astype(np.float32)
  54. x2 = np.random.randn(2, 4, 5).astype(np.float32)
  55. transpose_x1 = False
  56. transpose_x2 = False
  57. net = Net(transpose_x1, transpose_x2)
  58. output = net(Tensor(x1), Tensor(x2))
  59. assert output.shape == (2, 5)
  60. def test_x1_3D_x2_1D():
  61. x1 = np.random.randn(2, 4, 5).astype(np.float32)
  62. x2 = np.random.randn(5).astype(np.float32)
  63. transpose_x1 = False
  64. transpose_x2 = False
  65. net = Net(transpose_x1, transpose_x2)
  66. output = net(Tensor(x1), Tensor(x2))
  67. assert output.shape == (2, 4)
  68. def test_x1_1D_transpose_x1_True_x2_3D():
  69. x1 = np.random.randn(4).astype(np.float32)
  70. x2 = np.random.randn(2, 4, 5).astype(np.float32)
  71. transpose_x1 = True
  72. transpose_x2 = False
  73. net = Net(transpose_x1, transpose_x2)
  74. output = net(Tensor(x1), Tensor(x2))
  75. assert output.shape == (2, 5)
  76. def test_x1_3D_x2_1D_transpose_x2_True():
  77. x1 = np.random.randn(2, 4, 5).astype(np.float32)
  78. x2 = np.random.randn(5).astype(np.float32)
  79. transpose_x1 = False
  80. transpose_x2 = True
  81. net = Net(transpose_x1, transpose_x2)
  82. output = net(Tensor(x1), Tensor(x2))
  83. assert output.shape == (2, 4)