|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104 |
- import numpy as np
-
- import mindspore.context as context
- import mindspore.nn as nn
- from mindspore import Tensor
-
- context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
-
-
- class Net(nn.Cell):
- def __init__(self, transpose_x1, transpose_x2):
- super(Net, self).__init__()
- self.matmul = nn.MatMul(transpose_x1, transpose_x2)
-
- def construct(self, x1, x2):
- return self.matmul(x1, x2)
-
-
- def test_x1_2D_x2_3D():
- x1 = np.random.randn(16, 64).astype(np.float32)
- x2 = np.random.randn(32, 64, 20).astype(np.float32)
- transpose_x1 = False
- transpose_x2 = False
- net = Net(transpose_x1, transpose_x2)
- output = net(Tensor(x1), Tensor(x2))
- assert output.shape == (32, 16, 20)
-
-
- def test_x1_4D_x2_3D_transpose_x2_True():
- x1 = np.random.randn(3, 2, 3, 4).astype(np.float32)
- x2 = np.random.randn(1, 5, 4).astype(np.float32)
- transpose_x1 = False
- transpose_x2 = True
- net = Net(transpose_x1, transpose_x2)
- output = net(Tensor(x1), Tensor(x2))
- assert output.shape == (3, 2, 3, 5)
-
-
- def test_x1_3D_transpose_x1_True_x2_2D():
- x1 = np.random.randn(2, 3, 4).astype(np.float32)
- x2 = np.random.randn(3, 4).astype(np.float32)
- transpose_x1 = True
- transpose_x2 = False
- net = Net(transpose_x1, transpose_x2)
- output = net(Tensor(x1), Tensor(x2))
- assert output.shape == (2, 4, 4)
-
-
- def test_x1_3D_transpose_x1_True_x2_3D_transpose_x2_True():
- x1 = np.random.randn(2, 5, 6).astype(np.float32)
- x2 = np.random.randn(2, 4, 5).astype(np.float32)
- transpose_x1 = True
- transpose_x2 = True
- net = Net(transpose_x1, transpose_x2)
- output = net(Tensor(x1), Tensor(x2))
- assert output.shape == (2, 6, 4)
-
- def test_x1_1D_x2_1D():
- x1 = np.random.randn(4).astype(np.float32)
- x2 = np.random.randn(4).astype(np.float32)
- transpose_x1 = False
- transpose_x2 = False
- net = Net(transpose_x1, transpose_x2)
- output = net(Tensor(x1), Tensor(x2))
- assert output.shape == ()
-
- def test_x1_1D_x2_3D():
- x1 = np.random.randn(4).astype(np.float32)
- x2 = np.random.randn(2, 4, 5).astype(np.float32)
- transpose_x1 = False
- transpose_x2 = False
- net = Net(transpose_x1, transpose_x2)
- output = net(Tensor(x1), Tensor(x2))
- assert output.shape == (2, 5)
-
-
- def test_x1_3D_x2_1D():
- x1 = np.random.randn(2, 4, 5).astype(np.float32)
- x2 = np.random.randn(5).astype(np.float32)
- transpose_x1 = False
- transpose_x2 = False
- net = Net(transpose_x1, transpose_x2)
- output = net(Tensor(x1), Tensor(x2))
- assert output.shape == (2, 4)
-
-
- def test_x1_1D_transpose_x1_True_x2_3D():
- x1 = np.random.randn(4).astype(np.float32)
- x2 = np.random.randn(2, 4, 5).astype(np.float32)
- transpose_x1 = True
- transpose_x2 = False
- net = Net(transpose_x1, transpose_x2)
- output = net(Tensor(x1), Tensor(x2))
- assert output.shape == (2, 5)
-
-
- def test_x1_3D_x2_1D_transpose_x2_True():
- x1 = np.random.randn(2, 4, 5).astype(np.float32)
- x2 = np.random.randn(5).astype(np.float32)
- transpose_x1 = False
- transpose_x2 = True
- net = Net(transpose_x1, transpose_x2)
- output = net(Tensor(x1), Tensor(x2))
- assert output.shape == (2, 4)
|