|
1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798 |
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
-
- import numpy as np
- import pytest
-
- import mindspore.context as context
- from mindspore.common.tensor import Tensor
- from mindspore.nn import Cell
- from mindspore.ops import operations as P
-
-
- class NetAnd(Cell):
- def __init__(self):
- super(NetAnd, self).__init__()
- self.logicaland = P.LogicalAnd()
-
- def construct(self, input_x, input_y):
- return self.logicaland(input_x, input_y)
-
-
- class NetOr(Cell):
- def __init__(self):
- super(NetOr, self).__init__()
- self.logicalor = P.LogicalOr()
-
- def construct(self, input_x, input_y):
- return self.logicalor(input_x, input_y)
-
-
- class NetNot(Cell):
- def __init__(self):
- super(NetNot, self).__init__()
- self.logicalnot = P.LogicalNot()
-
- def construct(self, input_x):
- return self.logicalnot(input_x)
-
-
- x = np.array([True, False, False]).astype(np.bool)
- y = np.array([False]).astype(np.bool)
-
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.env_onecard
- def test_logicaland():
- context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU")
- logicaland = NetAnd()
- output = logicaland(Tensor(x), Tensor(y))
- assert np.all(output.asnumpy() == np.logical_and(x, y))
-
- context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
- logicaland = NetAnd()
- output = logicaland(Tensor(x), Tensor(y))
- assert np.all(output.asnumpy() == np.logical_and(x, y))
-
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.env_onecard
- def test_logicalor():
- context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU")
- logicalor = NetOr()
- output = logicalor(Tensor(x), Tensor(y))
- assert np.all(output.asnumpy() == np.logical_or(x, y))
-
- context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
- logicalor = NetOr()
- output = logicalor(Tensor(x), Tensor(y))
- assert np.all(output.asnumpy() == np.logical_or(x, y))
-
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.env_onecard
- def test_logicalnot():
- context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU")
- logicalnot = NetNot()
- output = logicalnot(Tensor(x))
- assert np.all(output.asnumpy() == np.logical_not(x))
-
- context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
- logicalnot = NetNot()
- output = logicalnot(Tensor(x))
- assert np.all(output.asnumpy() == np.logical_not(x))
|