You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

test_dropout.py 1.8 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354
  1. # Copyright 2020 Huawei Technologies Co., Ltd
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. # ============================================================================
  15. import numpy as np
  16. import pytest
  17. import mindspore.nn as nn
  18. from mindspore import Tensor
  19. from mindspore.ops import operations as P
  20. class Net(nn.Cell):
  21. def __init__(self, keep_prob):
  22. super(Net, self).__init__()
  23. self.drop = P.Dropout(keep_prob)
  24. def construct(self, x_):
  25. return self.drop(x_)
  26. @pytest.mark.level0
  27. @pytest.mark.platform_x86_gpu_training
  28. @pytest.mark.env_onecard
  29. def test_dropout():
  30. x_shape = [32, 16, 2, 5]
  31. x = np.ones(x_shape).astype(np.float32)
  32. keep_prob = 0.4
  33. dropout = Net(keep_prob)
  34. tx = Tensor(x)
  35. output, mask = dropout(tx)
  36. # check output
  37. output_np = output.asnumpy()
  38. elem_count = x.size
  39. nonzero_count = np.count_nonzero(output_np)
  40. assert (elem_count * (keep_prob - 0.1)) < nonzero_count < (elem_count * (keep_prob + 0.1))
  41. output_sum = np.sum(output_np)
  42. x_sum = np.sum(x)
  43. assert abs(output_sum - x_sum)/x_sum < 0.1
  44. # check mask
  45. mask_np = mask.asnumpy()
  46. mask_sum = np.sum(mask_np)
  47. assert np.count_nonzero(mask_np) == nonzero_count
  48. assert abs(mask_sum - nonzero_count)/nonzero_count < 0.1