You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

test_broadcast_op.py 6.1 kB

5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162
  1. # Copyright 2020 Huawei Technologies Co., Ltd
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. # ============================================================================
  15. import numpy as np
  16. import pytest
  17. import mindspore.context as context
  18. from mindspore.common.tensor import Tensor
  19. from mindspore.ops import operations as P
  20. @pytest.mark.level0
  21. @pytest.mark.platform_x86_gpu_training
  22. @pytest.mark.env_onecard
  23. def test_nobroadcast():
  24. context.set_context(mode=context.GRAPH_MODE, device_target='GPU')
  25. x1_np = np.random.rand(10, 20).astype(np.float32)
  26. x2_np = np.random.rand(10, 20).astype(np.float32)
  27. x1_np_int32 = np.random.randint(0, 100, (10, 20)).astype(np.int32)
  28. x2_np_int32 = np.random.randint(0, 100, (10, 20)).astype(np.int32)
  29. output_ms = P.Minimum()(Tensor(x1_np), Tensor(x2_np))
  30. output_np = np.minimum(x1_np, x2_np)
  31. assert np.allclose(output_ms.asnumpy(), output_np)
  32. output_ms = P.Maximum()(Tensor(x1_np), Tensor(x2_np))
  33. output_np = np.maximum(x1_np, x2_np)
  34. assert np.allclose(output_ms.asnumpy(), output_np)
  35. output_ms = P.Greater()(Tensor(x1_np), Tensor(x2_np))
  36. output_np = x1_np > x2_np
  37. assert np.allclose(output_ms.asnumpy(), output_np)
  38. output_ms = P.Less()(Tensor(x1_np), Tensor(x2_np))
  39. output_np = x1_np < x2_np
  40. assert np.allclose(output_ms.asnumpy(), output_np)
  41. output_ms = P.Less()(Tensor(x1_np_int32), Tensor(x2_np_int32))
  42. output_np = x1_np_int32 < x2_np_int32
  43. assert np.allclose(output_ms.asnumpy(), output_np)
  44. output_ms = P.Pow()(Tensor(x1_np), Tensor(x2_np))
  45. output_np = np.power(x1_np, x2_np)
  46. assert np.allclose(output_ms.asnumpy(), output_np)
  47. output_ms = P.RealDiv()(Tensor(x1_np), Tensor(x2_np))
  48. output_np = x1_np / x2_np
  49. assert np.allclose(output_ms.asnumpy(), output_np)
  50. output_ms = P.Mul()(Tensor(x1_np), Tensor(x2_np))
  51. output_np = x1_np * x2_np
  52. assert np.allclose(output_ms.asnumpy(), output_np)
  53. output_ms = P.Sub()(Tensor(x1_np), Tensor(x2_np))
  54. output_np = x1_np - x2_np
  55. assert np.allclose(output_ms.asnumpy(), output_np)
  56. @pytest.mark.level0
  57. @pytest.mark.platform_x86_gpu_training
  58. @pytest.mark.env_onecard
  59. def test_broadcast():
  60. context.set_context(mode=context.GRAPH_MODE, device_target='GPU')
  61. x1_np = np.random.rand(3, 1, 5, 1).astype(np.float32)
  62. x2_np = np.random.rand(1, 4, 1, 6).astype(np.float32)
  63. x1_np_int32 = np.random.randint(0, 100, (3, 1, 5, 1)).astype(np.int32)
  64. x2_np_int32 = np.random.randint(0, 100, (3, 1, 5, 1)).astype(np.int32)
  65. output_ms = P.Minimum()(Tensor(x1_np), Tensor(x2_np))
  66. output_np = np.minimum(x1_np, x2_np)
  67. assert np.allclose(output_ms.asnumpy(), output_np)
  68. output_ms = P.Maximum()(Tensor(x1_np), Tensor(x2_np))
  69. output_np = np.maximum(x1_np, x2_np)
  70. assert np.allclose(output_ms.asnumpy(), output_np)
  71. output_ms = P.Greater()(Tensor(x1_np), Tensor(x2_np))
  72. output_np = x1_np > x2_np
  73. assert np.allclose(output_ms.asnumpy(), output_np)
  74. output_ms = P.Less()(Tensor(x1_np), Tensor(x2_np))
  75. output_np = x1_np < x2_np
  76. assert np.allclose(output_ms.asnumpy(), output_np)
  77. output_ms = P.Less()(Tensor(x1_np_int32), Tensor(x2_np_int32))
  78. output_np = x1_np_int32 < x2_np_int32
  79. assert np.allclose(output_ms.asnumpy(), output_np)
  80. output_ms = P.Pow()(Tensor(x1_np), Tensor(x2_np))
  81. output_np = np.power(x1_np, x2_np)
  82. assert np.allclose(output_ms.asnumpy(), output_np)
  83. output_ms = P.RealDiv()(Tensor(x1_np), Tensor(x2_np))
  84. output_np = x1_np / x2_np
  85. assert np.allclose(output_ms.asnumpy(), output_np)
  86. output_ms = P.Mul()(Tensor(x1_np), Tensor(x2_np))
  87. output_np = x1_np * x2_np
  88. assert np.allclose(output_ms.asnumpy(), output_np)
  89. output_ms = P.Sub()(Tensor(x1_np), Tensor(x2_np))
  90. output_np = x1_np - x2_np
  91. assert np.allclose(output_ms.asnumpy(), output_np)
  92. @pytest.mark.level0
  93. @pytest.mark.platform_x86_gpu_training
  94. @pytest.mark.env_onecard
  95. def test_broadcast_diff_dims():
  96. context.set_context(mode=context.GRAPH_MODE, device_target='GPU')
  97. x1_np = np.random.rand(2).astype(np.float32)
  98. x2_np = np.random.rand(2, 1).astype(np.float32)
  99. x1_np_int32 = np.random.randint(0, 100, (2)).astype(np.int32)
  100. x2_np_int32 = np.random.randint(0, 100, (2, 1)).astype(np.int32)
  101. output_ms = P.Minimum()(Tensor(x1_np), Tensor(x2_np))
  102. output_np = np.minimum(x1_np, x2_np)
  103. assert np.allclose(output_ms.asnumpy(), output_np)
  104. output_ms = P.Maximum()(Tensor(x1_np), Tensor(x2_np))
  105. output_np = np.maximum(x1_np, x2_np)
  106. assert np.allclose(output_ms.asnumpy(), output_np)
  107. output_ms = P.Greater()(Tensor(x1_np), Tensor(x2_np))
  108. output_np = x1_np > x2_np
  109. assert np.allclose(output_ms.asnumpy(), output_np)
  110. output_ms = P.Less()(Tensor(x1_np), Tensor(x2_np))
  111. output_np = x1_np < x2_np
  112. assert np.allclose(output_ms.asnumpy(), output_np)
  113. output_ms = P.Less()(Tensor(x1_np_int32), Tensor(x2_np_int32))
  114. output_np = x1_np_int32 < x2_np_int32
  115. assert np.allclose(output_ms.asnumpy(), output_np)
  116. output_ms = P.Pow()(Tensor(x1_np), Tensor(x2_np))
  117. output_np = np.power(x1_np, x2_np)
  118. assert np.allclose(output_ms.asnumpy(), output_np)
  119. output_ms = P.RealDiv()(Tensor(x1_np), Tensor(x2_np))
  120. output_np = x1_np / x2_np
  121. assert np.allclose(output_ms.asnumpy(), output_np)
  122. output_ms = P.Mul()(Tensor(x1_np), Tensor(x2_np))
  123. output_np = x1_np * x2_np
  124. assert np.allclose(output_ms.asnumpy(), output_np)
  125. output_ms = P.Sub()(Tensor(x1_np), Tensor(x2_np))
  126. output_np = x1_np - x2_np
  127. assert np.allclose(output_ms.asnumpy(), output_np)