You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

README.md 4.0 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102
  1. # GOMO Example
  2. - [Description](#Description)
  3. - [Model Architecture](#Model-Architecture)
  4. - [Dataset](#Dataset)
  5. - [Environment Requirements](#Environment-Requirements)
  6. - [Quick Start](#Quick-Start)
  7. - [Script Description](#Script-Description)
  8. - [Script and Sample Code](#Script-and-Sample-Code)
  9. - [Training Process](#Training-Process)
  10. - [Model Description](#Model-Description)
  11. - [Evaluation Performance](#Evaluation-Performance)
  12. - [Description of Random Situation](#Description-of-Random-Situation)
  13. - [ModelZoo Homepage](#ModelZoo-Homepage)
  14. ## Description
  15. Generalized Operator Modelling of the Ocean (GOMO) is a three-dimensional ocean model based on OpenArray which is a simple operator library for the decoupling of ocean modelling and parallel computing (Xiaomeng Huang et al, 2019). GOMO is a numerical solution model using finite differential algorithm to solve PDE equations. With MindSpore and GPU, we can achieve great improvments in solving those PDE equations compared with CPU.
  16. This is an example of training GOMO Model with MindSpore on GPU.
  17. ## Model Architecture
  18. The overall model architecture of GOMO is show below:[link](https://gmd.copernicus.org/articles/12/4729/2019/gmd-12-4729-2019-discussion.html). The fundamental equations and algorithms of GOMO can also be found in this article
  19. ## Dataset
  20. Dataset used: Seamount
  21. - Dataset size: 65x49x21
  22. - Data format:nc
  23. - Download the dataset
  24. > download the GOMO from Github and you can find the seamount dataset file in the `GOMO/bin/data` directory.
  25. ## Environment Requirements
  26. - Hardware: GPU
  27. - Prepare hardware environment with GPU processor.
  28. - Framework
  29. - [MindSpore](https://www.mindspore.cn/install/en)
  30. - For more information, please check the resources below:
  31. - [MindSpore Tutorials](https://www.mindspore.cn/tutorial/training/en/master/index.html)
  32. - [MindSpore Python API](https://www.mindspore.cn/doc/api_python/en/master/index.html)
  33. ## Quick Start
  34. After installing MindSpore via the official website, you can start training as follows:
  35. ```shell
  36. # run distributed training example
  37. sh run_distribute_train.sh [im] [jm] [kb] [step] [DATASET_PATH]
  38. ```
  39. ## Script Description
  40. ### Script and Sample Code
  41. ```shell
  42. └── ocean_model
  43. ├── README.md # descriptions about ocean model GOMO
  44. ├── scripts
  45. │ ├── run_distribute_train.sh # launch distributed training for GPU
  46. ├──src
  47. │ ├── GOMO.py # GOMO model
  48. │ ├── Grid.py # grid initial
  49. │ ├── stencil.py # averaging and differential stencil oprator
  50. │ ├── op_operator.py # averaging and differential kernel operator
  51. │ ├── read_var.py # read variables from nc file
  52. ├── train.py # train script
  53. ```
  54. ### Training Process
  55. ```shell
  56. sh run_distribute_train.sh [im] [jm] [kb] [step] [DATASET_PATH]
  57. ```
  58. Training result will be stored in the current path, whose folder name begins with "train".
  59. ## Model Description
  60. ### Evaluation Performance
  61. | Parameters | GPU |
  62. | -------------------------- |---------------------------------- |
  63. | Resource | GPU(Tesla V100 SXM2),Memory 16G
  64. | uploaded Date |
  65. | MindSpore Version |
  66. | Dataset | Seamount
  67. | Training Parameters | step=10, im=65, km=49, kb=21
  68. | Outputs | numpy file
  69. | Speed | 17 ms/step
  70. | Total time | 3 mins
  71. | Scripts | [Link](https://gitee.com/mindspore/mindspore/tree/master/model_zoo/research/hpc/ocean_model)
  72. ## Description of Random Situation
  73. ## ModelZoo HomePage
  74. Please check the official [homepage](https://gitee.com/mindspore/mindspore/tree/master/model_zoo).