You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

resnet_cifar.py 6.2 kB

5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153
  1. # Copyright 2019 Huawei Technologies Co., Ltd
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. # ============================================================================
  15. import os
  16. import random
  17. import argparse
  18. import numpy as np
  19. from resnet import resnet50
  20. import mindspore.common.dtype as mstype
  21. import mindspore.dataset as ds
  22. import mindspore.dataset.transforms.c_transforms as C
  23. import mindspore.dataset.transforms.vision.c_transforms as vision
  24. import mindspore.nn as nn
  25. import mindspore.ops.functional as F
  26. from mindspore import Tensor
  27. from mindspore import context
  28. from mindspore.communication.management import init
  29. from mindspore.nn.optim.momentum import Momentum
  30. from mindspore.ops import operations as P
  31. from mindspore.parallel._auto_parallel_context import auto_parallel_context
  32. from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, LossMonitor
  33. from mindspore.train.model import Model, ParallelMode
  34. from mindspore.train.serialization import load_checkpoint, load_param_into_net
  35. random.seed(1)
  36. np.random.seed(1)
  37. ds.config.set_seed(1)
  38. parser = argparse.ArgumentParser(description='Image classification')
  39. parser.add_argument('--run_distribute', type=bool, default=False, help='Run distribute')
  40. parser.add_argument('--device_num', type=int, default=1, help='Device num.')
  41. parser.add_argument('--do_train', type=bool, default=True, help='Do train or not.')
  42. parser.add_argument('--do_eval', type=bool, default=False, help='Do eval or not.')
  43. parser.add_argument('--epoch_size', type=int, default=1, help='Epoch size.')
  44. parser.add_argument('--batch_size', type=int, default=32, help='Batch size.')
  45. parser.add_argument('--num_classes', type=int, default=10, help='Num classes.')
  46. parser.add_argument('--checkpoint_path', type=str, default=None, help='Checkpoint file path')
  47. parser.add_argument('--dataset_path', type=str, default="/var/log/npu/datasets/cifar", help='Dataset path')
  48. args_opt = parser.parse_args()
  49. device_id = int(os.getenv('DEVICE_ID'))
  50. data_home = args_opt.dataset_path
  51. context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
  52. context.set_context(device_id=device_id)
  53. def create_dataset(repeat_num=1, training=True):
  54. data_dir = data_home + "/cifar-10-batches-bin"
  55. if not training:
  56. data_dir = data_home + "/cifar-10-verify-bin"
  57. data_set = ds.Cifar10Dataset(data_dir)
  58. if args_opt.run_distribute:
  59. rank_id = int(os.getenv('RANK_ID'))
  60. rank_size = int(os.getenv('RANK_SIZE'))
  61. data_set = ds.Cifar10Dataset(data_dir, num_shards=rank_size, shard_id=rank_id)
  62. resize_height = 224
  63. resize_width = 224
  64. rescale = 1.0 / 255.0
  65. shift = 0.0
  66. # define map operations
  67. random_crop_op = vision.RandomCrop((32, 32), (4, 4, 4, 4)) # padding_mode default CONSTANT
  68. random_horizontal_op = vision.RandomHorizontalFlip()
  69. resize_op = vision.Resize((resize_height, resize_width)) # interpolation default BILINEAR
  70. rescale_op = vision.Rescale(rescale, shift)
  71. normalize_op = vision.Normalize((0.4465, 0.4822, 0.4914), (0.2010, 0.1994, 0.2023))
  72. changeswap_op = vision.HWC2CHW()
  73. type_cast_op = C.TypeCast(mstype.int32)
  74. c_trans = []
  75. if training:
  76. c_trans = [random_crop_op, random_horizontal_op]
  77. c_trans += [resize_op, rescale_op, normalize_op,
  78. changeswap_op]
  79. # apply map operations on images
  80. data_set = data_set.map(input_columns="label", operations=type_cast_op)
  81. data_set = data_set.map(input_columns="image", operations=c_trans)
  82. # apply repeat operations
  83. data_set = data_set.repeat(repeat_num)
  84. # apply shuffle operations
  85. data_set = data_set.shuffle(buffer_size=10)
  86. # apply batch operations
  87. data_set = data_set.batch(batch_size=args_opt.batch_size, drop_remainder=True)
  88. return data_set
  89. class CrossEntropyLoss(nn.Cell):
  90. def __init__(self):
  91. super(CrossEntropyLoss, self).__init__()
  92. self.cross_entropy = P.SoftmaxCrossEntropyWithLogits()
  93. self.mean = P.ReduceMean()
  94. self.one_hot = P.OneHot()
  95. self.one = Tensor(1.0, mstype.float32)
  96. self.zero = Tensor(0.0, mstype.float32)
  97. def construct(self, logits, label):
  98. label = self.one_hot(label, F.shape(logits)[1], self.one, self.zero)
  99. loss = self.cross_entropy(logits, label)[0]
  100. loss = self.mean(loss, (-1,))
  101. return loss
  102. if __name__ == '__main__':
  103. if not args_opt.do_eval and args_opt.run_distribute:
  104. context.set_auto_parallel_context(device_num=args_opt.device_num, parallel_mode=ParallelMode.DATA_PARALLEL)
  105. auto_parallel_context().set_all_reduce_fusion_split_indices([140])
  106. init()
  107. context.set_context(mode=context.GRAPH_MODE)
  108. epoch_size = args_opt.epoch_size
  109. net = resnet50(args_opt.batch_size, args_opt.num_classes)
  110. loss = CrossEntropyLoss()
  111. opt = Momentum(filter(lambda x: x.requires_grad, net.get_parameters()), 0.01, 0.9)
  112. model = Model(net, loss_fn=loss, optimizer=opt, metrics={'acc'})
  113. if args_opt.do_train:
  114. dataset = create_dataset(epoch_size)
  115. batch_num = dataset.get_dataset_size()
  116. config_ck = CheckpointConfig(save_checkpoint_steps=batch_num * 5, keep_checkpoint_max=10)
  117. ckpoint_cb = ModelCheckpoint(prefix="train_resnet_cifar10", directory="./", config=config_ck)
  118. loss_cb = LossMonitor()
  119. model.train(epoch_size, dataset, callbacks=[ckpoint_cb, loss_cb])
  120. if args_opt.do_eval:
  121. if args_opt.checkpoint_path:
  122. param_dict = load_checkpoint(args_opt.checkpoint_path)
  123. load_param_into_net(net, param_dict)
  124. net.set_train(False)
  125. eval_dataset = create_dataset(1, training=False)
  126. res = model.eval(eval_dataset)
  127. print("result: ", res)