You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

run_pretrain.py 12 kB

5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192
  1. # Copyright 2020 Huawei Technologies Co., Ltd
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. # ============================================================================
  15. """
  16. #################pre_train bert example on zh-wiki########################
  17. python run_pretrain.py
  18. """
  19. import os
  20. import argparse
  21. import numpy
  22. import mindspore.communication.management as D
  23. import mindspore.common.dtype as mstype
  24. from mindspore import context
  25. from mindspore.train.model import Model
  26. from mindspore.train.parallel_utils import ParallelMode
  27. from mindspore.nn.wrap.loss_scale import DynamicLossScaleUpdateCell
  28. from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, TimeMonitor
  29. from mindspore.train.serialization import load_checkpoint, load_param_into_net
  30. from mindspore.nn.optim import Lamb, Momentum, AdamWeightDecay
  31. from mindspore import log as logger
  32. from src import BertNetworkWithLoss, BertTrainOneStepCell, BertTrainOneStepWithLossScaleCell, \
  33. BertTrainAccumulateStepsWithLossScaleCell
  34. from src.dataset import create_bert_dataset
  35. from src.config import cfg, bert_net_cfg
  36. from src.utils import LossCallBack, BertLearningRate
  37. _current_dir = os.path.dirname(os.path.realpath(__file__))
  38. def run_pretrain():
  39. """pre-train bert_clue"""
  40. parser = argparse.ArgumentParser(description='bert pre_training')
  41. parser.add_argument('--device_target', type=str, default='Ascend', choices=['Ascend', 'GPU'],
  42. help='device where the code will be implemented. (Default: Ascend)')
  43. parser.add_argument("--distribute", type=str, default="false", help="Run distribute, default is false.")
  44. parser.add_argument("--epoch_size", type=int, default="1", help="Epoch size, default is 1.")
  45. parser.add_argument("--device_id", type=int, default=0, help="Device id, default is 0.")
  46. parser.add_argument("--device_num", type=int, default=1, help="Use device nums, default is 1.")
  47. parser.add_argument("--enable_save_ckpt", type=str, default="true", help="Enable save checkpoint, default is true.")
  48. parser.add_argument("--enable_lossscale", type=str, default="true", help="Use lossscale or not, default is not.")
  49. parser.add_argument("--do_shuffle", type=str, default="true", help="Enable shuffle for dataset, default is true.")
  50. parser.add_argument("--enable_data_sink", type=str, default="true", help="Enable data sink, default is true.")
  51. parser.add_argument("--data_sink_steps", type=int, default="1", help="Sink steps for each epoch, default is 1.")
  52. parser.add_argument("--accumulation_steps", type=int, default="1",
  53. help="Accumulating gradients N times before weight update, default is 1.")
  54. parser.add_argument("--save_checkpoint_path", type=str, default="", help="Save checkpoint path")
  55. parser.add_argument("--load_checkpoint_path", type=str, default="", help="Load checkpoint file path")
  56. parser.add_argument("--save_checkpoint_steps", type=int, default=1000, help="Save checkpoint steps, "
  57. "default is 1000.")
  58. parser.add_argument("--train_steps", type=int, default=-1, help="Training Steps, default is -1, "
  59. "meaning run all steps according to epoch number.")
  60. parser.add_argument("--save_checkpoint_num", type=int, default=1, help="Save checkpoint numbers, default is 1.")
  61. parser.add_argument("--data_dir", type=str, default="", help="Data path, it is better to use absolute path")
  62. parser.add_argument("--schema_dir", type=str, default="", help="Schema path, it is better to use absolute path")
  63. args_opt = parser.parse_args()
  64. context.set_context(mode=context.GRAPH_MODE, device_target=args_opt.device_target, device_id=args_opt.device_id)
  65. context.set_context(reserve_class_name_in_scope=False)
  66. ckpt_save_dir = args_opt.save_checkpoint_path
  67. if args_opt.distribute == "true":
  68. if args_opt.device_target == 'Ascend':
  69. D.init()
  70. device_num = args_opt.device_num
  71. rank = args_opt.device_id % device_num
  72. else:
  73. D.init()
  74. device_num = D.get_group_size()
  75. rank = D.get_rank()
  76. ckpt_save_dir = args_opt.save_checkpoint_path + 'ckpt_' + str(rank) + '/'
  77. context.reset_auto_parallel_context()
  78. context.set_auto_parallel_context(parallel_mode=ParallelMode.DATA_PARALLEL, mirror_mean=True,
  79. device_num=device_num)
  80. from mindspore.parallel._auto_parallel_context import auto_parallel_context
  81. if bert_net_cfg.num_hidden_layers == 12:
  82. if bert_net_cfg.use_relative_positions:
  83. auto_parallel_context().set_all_reduce_fusion_split_indices([29, 58, 87, 116, 145, 174, 203, 217])
  84. else:
  85. auto_parallel_context().set_all_reduce_fusion_split_indices([28, 55, 82, 109, 136, 163, 190, 205])
  86. elif bert_net_cfg.num_hidden_layers == 24:
  87. if bert_net_cfg.use_relative_positions:
  88. auto_parallel_context().set_all_reduce_fusion_split_indices([30, 90, 150, 210, 270, 330, 390, 421])
  89. else:
  90. auto_parallel_context().set_all_reduce_fusion_split_indices([38, 93, 148, 203, 258, 313, 368, 397])
  91. else:
  92. rank = 0
  93. device_num = 1
  94. if args_opt.device_target == 'GPU' and bert_net_cfg.compute_type != mstype.float32:
  95. logger.warning('Gpu only support fp32 temporarily, run with fp32.')
  96. bert_net_cfg.compute_type = mstype.float32
  97. if args_opt.accumulation_steps > 1:
  98. logger.info("accumulation steps: {}".format(args_opt.accumulation_steps))
  99. logger.info("global batch size: {}".format(bert_net_cfg.batch_size * args_opt.accumulation_steps))
  100. if args_opt.enable_data_sink == "true":
  101. args_opt.data_sink_steps *= args_opt.accumulation_steps
  102. logger.info("data sink steps: {}".format(args_opt.data_sink_steps))
  103. if args_opt.enable_save_ckpt == "true":
  104. args_opt.save_checkpoint_steps *= args_opt.accumulation_steps
  105. logger.info("save checkpoint steps: {}".format(args_opt.save_checkpoint_steps))
  106. ds = create_bert_dataset(device_num, rank, args_opt.do_shuffle, args_opt.data_dir, args_opt.schema_dir)
  107. net_with_loss = BertNetworkWithLoss(bert_net_cfg, True)
  108. new_repeat_count = args_opt.epoch_size * ds.get_dataset_size() // args_opt.data_sink_steps
  109. if args_opt.train_steps > 0:
  110. new_repeat_count = min(new_repeat_count, args_opt.train_steps // args_opt.data_sink_steps)
  111. else:
  112. args_opt.train_steps = args_opt.epoch_size * ds.get_dataset_size()
  113. logger.info("train steps: {}".format(args_opt.train_steps))
  114. if cfg.optimizer == 'Lamb':
  115. lr_schedule = BertLearningRate(learning_rate=cfg.Lamb.learning_rate,
  116. end_learning_rate=cfg.Lamb.end_learning_rate,
  117. warmup_steps=cfg.Lamb.warmup_steps,
  118. decay_steps=args_opt.train_steps,
  119. power=cfg.Lamb.power)
  120. params = net_with_loss.trainable_params()
  121. decay_params = list(filter(cfg.Lamb.decay_filter, params))
  122. other_params = list(filter(lambda x: not cfg.Lamb.decay_filter(x), params))
  123. group_params = [{'params': decay_params, 'weight_decay': cfg.Lamb.weight_decay},
  124. {'params': other_params},
  125. {'order_params': params}]
  126. optimizer = Lamb(group_params, learning_rate=lr_schedule, eps=cfg.Lamb.eps)
  127. elif cfg.optimizer == 'Momentum':
  128. optimizer = Momentum(net_with_loss.trainable_params(), learning_rate=cfg.Momentum.learning_rate,
  129. momentum=cfg.Momentum.momentum)
  130. elif cfg.optimizer == 'AdamWeightDecay':
  131. lr_schedule = BertLearningRate(learning_rate=cfg.AdamWeightDecay.learning_rate,
  132. end_learning_rate=cfg.AdamWeightDecay.end_learning_rate,
  133. warmup_steps=cfg.AdamWeightDecay.warmup_steps,
  134. decay_steps=args_opt.train_steps,
  135. power=cfg.AdamWeightDecay.power)
  136. params = net_with_loss.trainable_params()
  137. decay_params = list(filter(cfg.AdamWeightDecay.decay_filter, params))
  138. other_params = list(filter(lambda x: not cfg.AdamWeightDecay.decay_filter(x), params))
  139. group_params = [{'params': decay_params, 'weight_decay': cfg.AdamWeightDecay.weight_decay},
  140. {'params': other_params, 'weight_decay': 0.0},
  141. {'order_params': params}]
  142. optimizer = AdamWeightDecay(group_params, learning_rate=lr_schedule, eps=cfg.AdamWeightDecay.eps)
  143. else:
  144. raise ValueError("Don't support optimizer {}, only support [Lamb, Momentum, AdamWeightDecay]".
  145. format(cfg.optimizer))
  146. callback = [TimeMonitor(args_opt.data_sink_steps), LossCallBack(ds.get_dataset_size())]
  147. if args_opt.enable_save_ckpt == "true" and args_opt.device_id % min(8, device_num) == 0:
  148. config_ck = CheckpointConfig(save_checkpoint_steps=args_opt.save_checkpoint_steps,
  149. keep_checkpoint_max=args_opt.save_checkpoint_num)
  150. ckpoint_cb = ModelCheckpoint(prefix='checkpoint_bert',
  151. directory=None if ckpt_save_dir == "" else ckpt_save_dir, config=config_ck)
  152. callback.append(ckpoint_cb)
  153. if args_opt.load_checkpoint_path:
  154. param_dict = load_checkpoint(args_opt.load_checkpoint_path)
  155. load_param_into_net(net_with_loss, param_dict)
  156. if args_opt.enable_lossscale == "true":
  157. update_cell = DynamicLossScaleUpdateCell(loss_scale_value=cfg.loss_scale_value,
  158. scale_factor=cfg.scale_factor,
  159. scale_window=cfg.scale_window)
  160. if args_opt.accumulation_steps <= 1:
  161. net_with_grads = BertTrainOneStepWithLossScaleCell(net_with_loss, optimizer=optimizer,
  162. scale_update_cell=update_cell)
  163. else:
  164. accumulation_steps = args_opt.accumulation_steps
  165. net_with_grads = BertTrainAccumulateStepsWithLossScaleCell(net_with_loss, optimizer=optimizer,
  166. scale_update_cell=update_cell,
  167. accumulation_steps=accumulation_steps)
  168. else:
  169. net_with_grads = BertTrainOneStepCell(net_with_loss, optimizer=optimizer)
  170. model = Model(net_with_grads)
  171. model.train(new_repeat_count, ds, callbacks=callback,
  172. dataset_sink_mode=(args_opt.enable_data_sink == "true"), sink_size=args_opt.data_sink_steps)
  173. if __name__ == '__main__':
  174. numpy.random.seed(0)
  175. run_pretrain()