You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

train.py 10 kB

5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236
  1. # Copyright 2020 Huawei Technologies Co., Ltd
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. # ============================================================================
  15. """
  16. #################train vgg16 example on cifar10########################
  17. python train.py --data_path=$DATA_HOME --device_id=$DEVICE_ID
  18. """
  19. import argparse
  20. import datetime
  21. import os
  22. import random
  23. import numpy as np
  24. import mindspore.nn as nn
  25. from mindspore import Tensor
  26. from mindspore import context
  27. from mindspore.communication.management import init, get_rank, get_group_size
  28. from mindspore.nn.optim.momentum import Momentum
  29. from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, LossMonitor, TimeMonitor
  30. from mindspore.train.model import Model, ParallelMode
  31. from mindspore.train.serialization import load_param_into_net, load_checkpoint
  32. from mindspore.train.loss_scale_manager import FixedLossScaleManager
  33. from src.dataset import vgg_create_dataset
  34. from src.dataset import classification_dataset
  35. from src.crossentropy import CrossEntropy
  36. from src.warmup_step_lr import warmup_step_lr
  37. from src.warmup_cosine_annealing_lr import warmup_cosine_annealing_lr
  38. from src.warmup_step_lr import lr_steps
  39. from src.utils.logging import get_logger
  40. from src.utils.util import get_param_groups
  41. from src.vgg import vgg16
  42. random.seed(1)
  43. np.random.seed(1)
  44. def parse_args(cloud_args=None):
  45. """parameters"""
  46. parser = argparse.ArgumentParser('mindspore classification training')
  47. parser.add_argument('--device_target', type=str, default='Ascend', choices=['Ascend', 'GPU'],
  48. help='device where the code will be implemented. (Default: Ascend)')
  49. parser.add_argument('--device_id', type=int, default=1, help='device id of GPU or Ascend. (Default: None)')
  50. # dataset related
  51. parser.add_argument('--dataset', type=str, choices=["cifar10", "imagenet2012"], default="cifar10")
  52. parser.add_argument('--data_path', type=str, default='', help='train data dir')
  53. # network related
  54. parser.add_argument('--pre_trained', default='', type=str, help='model_path, local pretrained model to load')
  55. parser.add_argument('--lr_gamma', type=float, default=0.1,
  56. help='decrease lr by a factor of exponential lr_scheduler')
  57. parser.add_argument('--eta_min', type=float, default=0., help='eta_min in cosine_annealing scheduler')
  58. parser.add_argument('--T_max', type=int, default=150, help='T-max in cosine_annealing scheduler')
  59. # logging and checkpoint related
  60. parser.add_argument('--log_interval', type=int, default=100, help='logging interval')
  61. parser.add_argument('--ckpt_path', type=str, default='outputs/', help='checkpoint save location')
  62. parser.add_argument('--ckpt_interval', type=int, default=5, help='ckpt_interval')
  63. parser.add_argument('--is_save_on_master', type=int, default=1, help='save ckpt on master or all rank')
  64. # distributed related
  65. parser.add_argument('--is_distributed', type=int, default=0, help='if multi device')
  66. parser.add_argument('--rank', type=int, default=0, help='local rank of distributed')
  67. parser.add_argument('--group_size', type=int, default=1, help='world size of distributed')
  68. args_opt = parser.parse_args()
  69. args_opt = merge_args(args_opt, cloud_args)
  70. if args_opt.dataset == "cifar10":
  71. from src.config import cifar_cfg as cfg
  72. else:
  73. from src.config import imagenet_cfg as cfg
  74. args_opt.label_smooth = cfg.label_smooth
  75. args_opt.label_smooth_factor = cfg.label_smooth_factor
  76. args_opt.lr_scheduler = cfg.lr_scheduler
  77. args_opt.loss_scale = cfg.loss_scale
  78. args_opt.max_epoch = cfg.max_epoch
  79. args_opt.warmup_epochs = cfg.warmup_epochs
  80. args_opt.lr = cfg.lr
  81. args_opt.lr_init = cfg.lr_init
  82. args_opt.lr_max = cfg.lr_max
  83. args_opt.momentum = cfg.momentum
  84. args_opt.weight_decay = cfg.weight_decay
  85. args_opt.per_batch_size = cfg.batch_size
  86. args_opt.num_classes = cfg.num_classes
  87. args_opt.buffer_size = cfg.buffer_size
  88. args_opt.ckpt_save_max = cfg.keep_checkpoint_max
  89. args_opt.pad_mode = cfg.pad_mode
  90. args_opt.padding = cfg.padding
  91. args_opt.has_bias = cfg.has_bias
  92. args_opt.batch_norm = cfg.batch_norm
  93. args_opt.initialize_mode = cfg.initialize_mode
  94. args_opt.has_dropout = cfg.has_dropout
  95. args_opt.lr_epochs = list(map(int, cfg.lr_epochs.split(',')))
  96. args_opt.image_size = list(map(int, cfg.image_size.split(',')))
  97. return args_opt
  98. def merge_args(args_opt, cloud_args):
  99. """dictionary"""
  100. args_dict = vars(args_opt)
  101. if isinstance(cloud_args, dict):
  102. for key_arg in cloud_args.keys():
  103. val = cloud_args[key_arg]
  104. if key_arg in args_dict and val:
  105. arg_type = type(args_dict[key_arg])
  106. if arg_type is not None:
  107. val = arg_type(val)
  108. args_dict[key_arg] = val
  109. return args_opt
  110. if __name__ == '__main__':
  111. args = parse_args()
  112. device_num = int(os.environ.get("DEVICE_NUM", 1))
  113. if args.is_distributed:
  114. if args.device_target == "Ascend":
  115. init()
  116. context.set_context(device_id=args.device_id)
  117. elif args.device_target == "GPU":
  118. init()
  119. args.rank = get_rank()
  120. args.group_size = get_group_size()
  121. device_num = args.group_size
  122. context.reset_auto_parallel_context()
  123. context.set_auto_parallel_context(device_num=device_num, parallel_mode=ParallelMode.DATA_PARALLEL,
  124. parameter_broadcast=True, mirror_mean=True)
  125. else:
  126. context.set_context(device_id=args.device_id)
  127. context.set_context(mode=context.GRAPH_MODE, device_target=args.device_target)
  128. # select for master rank save ckpt or all rank save, compatible for model parallel
  129. args.rank_save_ckpt_flag = 0
  130. if args.is_save_on_master:
  131. if args.rank == 0:
  132. args.rank_save_ckpt_flag = 1
  133. else:
  134. args.rank_save_ckpt_flag = 1
  135. # logger
  136. args.outputs_dir = os.path.join(args.ckpt_path,
  137. datetime.datetime.now().strftime('%Y-%m-%d_time_%H_%M_%S'))
  138. args.logger = get_logger(args.outputs_dir, args.rank)
  139. if args.dataset == "cifar10":
  140. dataset = vgg_create_dataset(args.data_path, args.image_size, args.per_batch_size, args.rank, args.group_size)
  141. else:
  142. dataset = classification_dataset(args.data_path, args.image_size, args.per_batch_size,
  143. args.rank, args.group_size)
  144. batch_num = dataset.get_dataset_size()
  145. args.steps_per_epoch = dataset.get_dataset_size()
  146. args.logger.save_args(args)
  147. # network
  148. args.logger.important_info('start create network')
  149. # get network and init
  150. network = vgg16(args.num_classes, args)
  151. # pre_trained
  152. if args.pre_trained:
  153. load_param_into_net(network, load_checkpoint(args.pre_trained))
  154. # lr scheduler
  155. if args.lr_scheduler == 'exponential':
  156. lr = warmup_step_lr(args.lr,
  157. args.lr_epochs,
  158. args.steps_per_epoch,
  159. args.warmup_epochs,
  160. args.max_epoch,
  161. gamma=args.lr_gamma,
  162. )
  163. elif args.lr_scheduler == 'cosine_annealing':
  164. lr = warmup_cosine_annealing_lr(args.lr,
  165. args.steps_per_epoch,
  166. args.warmup_epochs,
  167. args.max_epoch,
  168. args.T_max,
  169. args.eta_min)
  170. elif args.lr_scheduler == 'step':
  171. lr = lr_steps(0, lr_init=args.lr_init, lr_max=args.lr_max, warmup_epochs=args.warmup_epochs,
  172. total_epochs=args.max_epoch, steps_per_epoch=batch_num)
  173. else:
  174. raise NotImplementedError(args.lr_scheduler)
  175. # optimizer
  176. opt = Momentum(params=get_param_groups(network),
  177. learning_rate=Tensor(lr),
  178. momentum=args.momentum,
  179. weight_decay=args.weight_decay,
  180. loss_scale=args.loss_scale)
  181. if args.dataset == "cifar10":
  182. loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean', is_grad=False)
  183. model = Model(network, loss_fn=loss, optimizer=opt, metrics={'acc'},
  184. amp_level="O2", keep_batchnorm_fp32=False, loss_scale_manager=None)
  185. else:
  186. if not args.label_smooth:
  187. args.label_smooth_factor = 0.0
  188. loss = CrossEntropy(smooth_factor=args.label_smooth_factor, num_classes=args.num_classes)
  189. loss_scale_manager = FixedLossScaleManager(args.loss_scale, drop_overflow_update=False)
  190. model = Model(network, loss_fn=loss, optimizer=opt, loss_scale_manager=loss_scale_manager, amp_level="O2")
  191. # define callbacks
  192. time_cb = TimeMonitor(data_size=batch_num)
  193. loss_cb = LossMonitor(per_print_times=batch_num)
  194. callbacks = [time_cb, loss_cb]
  195. if args.rank_save_ckpt_flag:
  196. ckpt_config = CheckpointConfig(save_checkpoint_steps=args.ckpt_interval * args.steps_per_epoch,
  197. keep_checkpoint_max=args.ckpt_save_max)
  198. ckpt_cb = ModelCheckpoint(config=ckpt_config,
  199. directory=args.outputs_dir,
  200. prefix='{}'.format(args.rank))
  201. callbacks.append(ckpt_cb)
  202. model.train(args.max_epoch, dataset, callbacks=callbacks)