You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

train.py 12 kB

5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290
  1. # Copyright 2020 Huawei Technologies Co., Ltd
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. # ============================================================================
  15. """train ImageNet."""
  16. import os
  17. import time
  18. import argparse
  19. import datetime
  20. import mindspore.nn as nn
  21. from mindspore import Tensor, context
  22. from mindspore import ParallelMode
  23. from mindspore.nn.optim import Momentum
  24. from mindspore.communication.management import init, get_rank, get_group_size
  25. from mindspore.train.callback import ModelCheckpoint
  26. from mindspore.train.callback import CheckpointConfig, Callback
  27. from mindspore.train.serialization import load_checkpoint, load_param_into_net
  28. from mindspore.train.model import Model
  29. from mindspore.train.loss_scale_manager import DynamicLossScaleManager, FixedLossScaleManager
  30. from src.dataset import classification_dataset
  31. from src.crossentropy import CrossEntropy
  32. from src.warmup_step_lr import warmup_step_lr
  33. from src.warmup_cosine_annealing_lr import warmup_cosine_annealing_lr
  34. from src.utils.logging import get_logger
  35. from src.utils.optimizers__init__ import get_param_groups
  36. from src.image_classification import get_network
  37. from src.config import config
  38. class BuildTrainNetwork(nn.Cell):
  39. """build training network"""
  40. def __init__(self, network, criterion):
  41. super(BuildTrainNetwork, self).__init__()
  42. self.network = network
  43. self.criterion = criterion
  44. def construct(self, input_data, label):
  45. output = self.network(input_data)
  46. loss = self.criterion(output, label)
  47. return loss
  48. class ProgressMonitor(Callback):
  49. """monitor loss and time"""
  50. def __init__(self, args):
  51. super(ProgressMonitor, self).__init__()
  52. self.me_epoch_start_time = 0
  53. self.me_epoch_start_step_num = 0
  54. self.args = args
  55. self.ckpt_history = []
  56. def begin(self, run_context):
  57. self.args.logger.info('start network train...')
  58. def epoch_begin(self, run_context):
  59. pass
  60. def epoch_end(self, run_context, *me_args):
  61. cb_params = run_context.original_args()
  62. me_step = cb_params.cur_step_num - 1
  63. real_epoch = me_step // self.args.steps_per_epoch
  64. time_used = time.time() - self.me_epoch_start_time
  65. fps_mean = self.args.per_batch_size * (me_step-self.me_epoch_start_step_num) * self.args.group_size / time_used
  66. self.args.logger.info('epoch[{}], iter[{}], loss:{}, mean_fps:{:.2f}'
  67. 'imgs/sec'.format(real_epoch, me_step, cb_params.net_outputs, fps_mean))
  68. if self.args.rank_save_ckpt_flag:
  69. import glob
  70. ckpts = glob.glob(os.path.join(self.args.outputs_dir, '*.ckpt'))
  71. for ckpt in ckpts:
  72. ckpt_fn = os.path.basename(ckpt)
  73. if not ckpt_fn.startswith('{}-'.format(self.args.rank)):
  74. continue
  75. if ckpt in self.ckpt_history:
  76. continue
  77. self.ckpt_history.append(ckpt)
  78. self.args.logger.info('epoch[{}], iter[{}], loss:{}, ckpt:{},'
  79. 'ckpt_fn:{}'.format(real_epoch, me_step, cb_params.net_outputs, ckpt, ckpt_fn))
  80. self.me_epoch_start_step_num = me_step
  81. self.me_epoch_start_time = time.time()
  82. def step_begin(self, run_context):
  83. pass
  84. def step_end(self, run_context, *me_args):
  85. pass
  86. def end(self, run_context):
  87. self.args.logger.info('end network train...')
  88. def parse_args(cloud_args=None):
  89. """parameters"""
  90. parser = argparse.ArgumentParser('mindspore classification training')
  91. parser.add_argument('--platform', type=str, default='Ascend', choices=('Ascend', 'GPU'), help='run platform')
  92. # dataset related
  93. parser.add_argument('--data_dir', type=str, default='', help='train data dir')
  94. parser.add_argument('--per_batch_size', default=128, type=int, help='batch size for per gpu')
  95. # network related
  96. parser.add_argument('--pretrained', default='', type=str, help='model_path, local pretrained model to load')
  97. # distributed related
  98. parser.add_argument('--is_distributed', type=int, default=1, help='if multi device')
  99. # roma obs
  100. parser.add_argument('--train_url', type=str, default="", help='train url')
  101. args, _ = parser.parse_known_args()
  102. args = merge_args(args, cloud_args)
  103. args.image_size = config.image_size
  104. args.num_classes = config.num_classes
  105. args.lr = config.lr
  106. args.lr_scheduler = config.lr_scheduler
  107. args.lr_epochs = config.lr_epochs
  108. args.lr_gamma = config.lr_gamma
  109. args.eta_min = config.eta_min
  110. args.T_max = config.T_max
  111. args.max_epoch = config.max_epoch
  112. args.backbone = config.backbone
  113. args.warmup_epochs = config.warmup_epochs
  114. args.weight_decay = config.weight_decay
  115. args.momentum = config.momentum
  116. args.is_dynamic_loss_scale = config.is_dynamic_loss_scale
  117. args.loss_scale = config.loss_scale
  118. args.label_smooth = config.label_smooth
  119. args.label_smooth_factor = config.label_smooth_factor
  120. args.ckpt_interval = config.ckpt_interval
  121. args.ckpt_save_max = config.ckpt_save_max
  122. args.ckpt_path = config.ckpt_path
  123. args.is_save_on_master = config.is_save_on_master
  124. args.rank = config.rank
  125. args.group_size = config.group_size
  126. args.lr_epochs = list(map(int, args.lr_epochs.split(',')))
  127. args.image_size = list(map(int, args.image_size.split(',')))
  128. return args
  129. def merge_args(args, cloud_args):
  130. """dictionary"""
  131. args_dict = vars(args)
  132. if isinstance(cloud_args, dict):
  133. for key in cloud_args.keys():
  134. val = cloud_args[key]
  135. if key in args_dict and val:
  136. arg_type = type(args_dict[key])
  137. if arg_type is not type(None):
  138. val = arg_type(val)
  139. args_dict[key] = val
  140. return args
  141. def train(cloud_args=None):
  142. """training process"""
  143. args = parse_args(cloud_args)
  144. context.set_context(mode=context.GRAPH_MODE, enable_auto_mixed_precision=True,
  145. device_target=args.platform, save_graphs=False)
  146. if os.getenv('DEVICE_ID', "not_set").isdigit():
  147. context.set_context(device_id=int(os.getenv('DEVICE_ID')))
  148. # init distributed
  149. if args.is_distributed:
  150. init()
  151. args.rank = get_rank()
  152. args.group_size = get_group_size()
  153. parallel_mode = ParallelMode.DATA_PARALLEL
  154. context.set_auto_parallel_context(parallel_mode=parallel_mode, device_num=args.group_size,
  155. parameter_broadcast=True, mirror_mean=True)
  156. else:
  157. args.rank = 0
  158. args.group_size = 1
  159. if args.is_dynamic_loss_scale == 1:
  160. args.loss_scale = 1 # for dynamic loss scale can not set loss scale in momentum opt
  161. # select for master rank save ckpt or all rank save, compatiable for model parallel
  162. args.rank_save_ckpt_flag = 0
  163. if args.is_save_on_master:
  164. if args.rank == 0:
  165. args.rank_save_ckpt_flag = 1
  166. else:
  167. args.rank_save_ckpt_flag = 1
  168. # logger
  169. args.outputs_dir = os.path.join(args.ckpt_path,
  170. datetime.datetime.now().strftime('%Y-%m-%d_time_%H_%M_%S'))
  171. args.logger = get_logger(args.outputs_dir, args.rank)
  172. # dataloader
  173. de_dataset = classification_dataset(args.data_dir, args.image_size,
  174. args.per_batch_size, 1,
  175. args.rank, args.group_size, num_parallel_workers=8)
  176. de_dataset.map_model = 4 # !!!important
  177. args.steps_per_epoch = de_dataset.get_dataset_size()
  178. args.logger.save_args(args)
  179. # network
  180. args.logger.important_info('start create network')
  181. # get network and init
  182. network = get_network(args.backbone, args.num_classes, platform=args.platform)
  183. if network is None:
  184. raise NotImplementedError('not implement {}'.format(args.backbone))
  185. # load pretrain model
  186. if os.path.isfile(args.pretrained):
  187. param_dict = load_checkpoint(args.pretrained)
  188. param_dict_new = {}
  189. for key, values in param_dict.items():
  190. if key.startswith('moments.'):
  191. continue
  192. elif key.startswith('network.'):
  193. param_dict_new[key[8:]] = values
  194. else:
  195. param_dict_new[key] = values
  196. load_param_into_net(network, param_dict_new)
  197. args.logger.info('load model {} success'.format(args.pretrained))
  198. # lr scheduler
  199. if args.lr_scheduler == 'exponential':
  200. lr = warmup_step_lr(args.lr,
  201. args.lr_epochs,
  202. args.steps_per_epoch,
  203. args.warmup_epochs,
  204. args.max_epoch,
  205. gamma=args.lr_gamma,
  206. )
  207. elif args.lr_scheduler == 'cosine_annealing':
  208. lr = warmup_cosine_annealing_lr(args.lr,
  209. args.steps_per_epoch,
  210. args.warmup_epochs,
  211. args.max_epoch,
  212. args.T_max,
  213. args.eta_min)
  214. else:
  215. raise NotImplementedError(args.lr_scheduler)
  216. # optimizer
  217. opt = Momentum(params=get_param_groups(network),
  218. learning_rate=Tensor(lr),
  219. momentum=args.momentum,
  220. weight_decay=args.weight_decay,
  221. loss_scale=args.loss_scale)
  222. # loss
  223. if not args.label_smooth:
  224. args.label_smooth_factor = 0.0
  225. loss = CrossEntropy(smooth_factor=args.label_smooth_factor, num_classes=args.num_classes)
  226. if args.is_dynamic_loss_scale == 1:
  227. loss_scale_manager = DynamicLossScaleManager(init_loss_scale=65536, scale_factor=2, scale_window=2000)
  228. else:
  229. loss_scale_manager = FixedLossScaleManager(args.loss_scale, drop_overflow_update=False)
  230. if args.platform == "Ascend":
  231. model = Model(network, loss_fn=loss, optimizer=opt, loss_scale_manager=loss_scale_manager,
  232. metrics={'acc'}, amp_level="O3")
  233. else:
  234. model = Model(network, loss_fn=loss, optimizer=opt, loss_scale_manager=loss_scale_manager,
  235. metrics={'acc'}, amp_level="O2")
  236. # checkpoint save
  237. progress_cb = ProgressMonitor(args)
  238. callbacks = [progress_cb,]
  239. if args.rank_save_ckpt_flag:
  240. ckpt_config = CheckpointConfig(save_checkpoint_steps=args.ckpt_interval * args.steps_per_epoch,
  241. keep_checkpoint_max=args.ckpt_save_max)
  242. ckpt_cb = ModelCheckpoint(config=ckpt_config,
  243. directory=args.outputs_dir,
  244. prefix='{}'.format(args.rank))
  245. callbacks.append(ckpt_cb)
  246. model.train(args.max_epoch, de_dataset, callbacks=callbacks, dataset_sink_mode=True)
  247. if __name__ == "__main__":
  248. train()