You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

test_datasets_imagenet.py 6.8 kB

5 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204
  1. # Copyright 2019 Huawei Technologies Co., Ltd
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. # ==============================================================================
  15. import mindspore.dataset as ds
  16. import mindspore.dataset.transforms.c_transforms as data_trans
  17. import mindspore.dataset.transforms.vision.c_transforms as vision
  18. from mindspore import log as logger
  19. DATA_DIR = ["../data/dataset/test_tf_file_3_images/train-0000-of-0001.data"]
  20. SCHEMA_DIR = "../data/dataset/test_tf_file_3_images/datasetSchema.json"
  21. def test_case_repeat():
  22. """
  23. a simple repeat operation.
  24. """
  25. logger.info("Test Simple Repeat")
  26. # define parameters
  27. repeat_count = 2
  28. # apply dataset operations
  29. data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, shuffle=False)
  30. data1 = data1.repeat(repeat_count)
  31. num_iter = 0
  32. for item in data1.create_dict_iterator(): # each data is a dictionary
  33. # in this example, each dictionary has keys "image" and "label"
  34. logger.info("image is: {}".format(item["image"]))
  35. logger.info("label is: {}".format(item["label"]))
  36. num_iter += 1
  37. logger.info("Number of data in data1: {}".format(num_iter))
  38. def test_case_shuffle():
  39. """
  40. a simple shuffle operation.
  41. """
  42. logger.info("Test Simple Shuffle")
  43. # define parameters
  44. buffer_size = 8
  45. seed = 10
  46. # apply dataset operations
  47. data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, shuffle=False)
  48. ds.config.set_seed(seed)
  49. data1 = data1.shuffle(buffer_size=buffer_size)
  50. for item in data1.create_dict_iterator():
  51. logger.info("image is: {}".format(item["image"]))
  52. logger.info("label is: {}".format(item["label"]))
  53. def test_case_0():
  54. """
  55. Test Repeat then Shuffle
  56. """
  57. logger.info("Test Repeat then Shuffle")
  58. # define parameters
  59. repeat_count = 2
  60. buffer_size = 7
  61. seed = 9
  62. # apply dataset operations
  63. data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, shuffle=False)
  64. data1 = data1.repeat(repeat_count)
  65. ds.config.set_seed(seed)
  66. data1 = data1.shuffle(buffer_size=buffer_size)
  67. num_iter = 0
  68. for item in data1.create_dict_iterator(): # each data is a dictionary
  69. # in this example, each dictionary has keys "image" and "label"
  70. logger.info("image is: {}".format(item["image"]))
  71. logger.info("label is: {}".format(item["label"]))
  72. num_iter += 1
  73. logger.info("Number of data in data1: {}".format(num_iter))
  74. def test_case_0_reverse():
  75. """
  76. Test Shuffle then Repeat
  77. """
  78. logger.info("Test Shuffle then Repeat")
  79. # define parameters
  80. repeat_count = 2
  81. buffer_size = 10
  82. seed = 9
  83. # apply dataset operations
  84. data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, shuffle=False)
  85. ds.config.set_seed(seed)
  86. data1 = data1.shuffle(buffer_size=buffer_size)
  87. data1 = data1.repeat(repeat_count)
  88. num_iter = 0
  89. for item in data1.create_dict_iterator(): # each data is a dictionary
  90. # in this example, each dictionary has keys "image" and "label"
  91. logger.info("image is: {}".format(item["image"]))
  92. logger.info("label is: {}".format(item["label"]))
  93. num_iter += 1
  94. logger.info("Number of data in data1: {}".format(num_iter))
  95. def test_case_3():
  96. """
  97. Test Map
  98. """
  99. logger.info("Test Map Rescale and Resize, then Shuffle")
  100. data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, shuffle=False)
  101. # define data augmentation parameters
  102. rescale = 1.0 / 255.0
  103. shift = 0.0
  104. resize_height, resize_width = 224, 224
  105. # define map operations
  106. decode_op = vision.Decode()
  107. rescale_op = vision.Rescale(rescale, shift)
  108. # resize_op = vision.Resize(resize_height, resize_width,
  109. # InterpolationMode.DE_INTER_LINEAR) # Bilinear mode
  110. resize_op = vision.Resize((resize_height, resize_width))
  111. # apply map operations on images
  112. data1 = data1.map(input_columns=["image"], operations=decode_op)
  113. data1 = data1.map(input_columns=["image"], operations=rescale_op)
  114. data1 = data1.map(input_columns=["image"], operations=resize_op)
  115. # # apply ont-hot encoding on labels
  116. num_classes = 4
  117. one_hot_encode = data_trans.OneHot(num_classes) # num_classes is input argument
  118. data1 = data1.map(input_columns=["label"], operations=one_hot_encode)
  119. #
  120. # # apply Datasets
  121. buffer_size = 100
  122. seed = 10
  123. batch_size = 2
  124. ds.config.set_seed(seed)
  125. data1 = data1.shuffle(buffer_size=buffer_size) # 10000 as in imageNet train script
  126. data1 = data1.batch(batch_size, drop_remainder=True)
  127. num_iter = 0
  128. for item in data1.create_dict_iterator(): # each data is a dictionary
  129. # in this example, each dictionary has keys "image" and "label"
  130. logger.info("image is: {}".format(item["image"]))
  131. logger.info("label is: {}".format(item["label"]))
  132. num_iter += 1
  133. logger.info("Number of data in data1: {}".format(num_iter))
  134. if __name__ == '__main__':
  135. logger.info('===========now test Repeat============')
  136. # logger.info('Simple Repeat')
  137. test_case_repeat()
  138. logger.info('\n')
  139. logger.info('===========now test Shuffle===========')
  140. # logger.info('Simple Shuffle')
  141. test_case_shuffle()
  142. logger.info('\n')
  143. # Note: cannot work with different shapes, hence not for image
  144. # logger.info('===========now test Batch=============')
  145. # # logger.info('Simple Batch')
  146. # test_case_batch()
  147. # logger.info('\n')
  148. logger.info('===========now test case 0============')
  149. # logger.info('Repeat then Shuffle')
  150. test_case_0()
  151. logger.info('\n')
  152. logger.info('===========now test case 0 reverse============')
  153. # # logger.info('Shuffle then Repeat')
  154. test_case_0_reverse()
  155. logger.info('\n')
  156. # logger.info('===========now test case 1============')
  157. # # logger.info('Repeat with Batch')
  158. # test_case_1()
  159. # logger.info('\n')
  160. # logger.info('===========now test case 2============')
  161. # # logger.info('Batch with Shuffle')
  162. # test_case_2()
  163. # logger.info('\n')
  164. # for image augmentation only
  165. logger.info('===========now test case 3============')
  166. logger.info('Map then Shuffle')
  167. test_case_3()
  168. logger.info('\n')