|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128 |
- # ResNet-50-THOR Example
-
- ## Description
-
- This is an example of training ResNet-50 V1.5 with ImageNet2012 dataset by second-order optimizer THOR. THOR is a novel approximate seond-order optimization method in MindSpore. With fewer iterations, THOR can finish ResNet-50 V1.5 training in 72 minutes to top-1 accuracy of 75.9% using 8 Ascend 910, which is much faster than SGD with Momentum.
-
- ## Requirements
-
- - Install [MindSpore](https://www.mindspore.cn/install/en).
-
- - Download the dataset ImageNet2012
-
- > Unzip the ImageNet2012 dataset to any path you want and the folder structure should include train and eval dataset as follows:
- > ```
- > .
- > ├── ilsvrc # train dataset
- > └── ilsvrc_eval # infer dataset
- > ```
-
-
- ## Example structure
-
- ```shell
- .
- ├── resnet_thor
- ├── README.md
- ├── src
- ├── crossentropy.py # CrossEntropy loss function
- ├── config.py # parameter configuration
- ├── resnet50.py # resnet50 backbone
- ├── dataset_helper.py # dataset help for minddata dataset
- ├── grad_reducer_thor.py # grad reducer for thor
- ├── model_thor.py # model
- ├── resnet_thor.py # resnet50_thor backone
- ├── thor.py # thor
- ├── thor_layer.py # thor layer
- └── dataset_imagenet.py # data preprocessing
- ├── scripts
- ├── run_distribute_train.sh # launch distributed training(8 pcs)
- └── run_eval.sh # launch infering
- ├── eval.py # infer script
- └── train.py # train script
- ```
-
-
- ## Parameter configuration
-
- Parameters for both training and inference can be set in config.py.
-
- ```
- "class_num": 1000, # dataset class number
- "batch_size": 32, # batch size of input tensor
- "loss_scale": 128, # loss scale
- "momentum": 0.9, # momentum of THOR optimizer
- "weight_decay": 5e-4, # weight decay
- "epoch_size": 45, # only valid for taining, which is always 1 for inference
- "buffer_size": 1000, # number of queue size in data preprocessing
- "image_height": 224, # image height
- "image_width": 224, # image width
- "save_checkpoint": True, # whether save checkpoint or not
- "save_checkpoint_steps": 5004, # the step interval between two checkpoints. By default, the checkpoint will be saved every epoch
- "keep_checkpoint_max": 20, # only keep the last keep_checkpoint_max checkpoint
- "save_checkpoint_path": "./", # path to save checkpoint relative to the executed path
- "label_smooth": True, # label smooth
- "label_smooth_factor": 0.1, # label smooth factor
- "frequency": 834, # the step interval to update second-order information matrix
- ```
-
- ## Running the example
-
- ### Train
-
- #### Usage
-
- ```
- # distributed training
- Usage: sh run_distribute_train.sh [MINDSPORE_HCCL_CONFIG_PATH] [DATASET_PATH] [DEVICE_NUM]
- ```
-
-
- #### Launch
-
- ```bash
- # distributed training example(8 pcs)
- sh run_distribute_train.sh rank_table_8p.json dataset/ilsvrc
- ```
-
- > About rank_table.json, you can refer to the [distributed training tutorial](https://www.mindspore.cn/tutorial/en/master/advanced_use/distributed_training.html).
-
- #### Result
-
- Training result will be stored in the example path, whose folder name begins with "train_parallel". Under this, you can find checkpoint file together with result like the followings in log.
-
- ```
- # distribute training result(8 pcs)
- epoch: 1 step: 5004, loss is 4.4182425
- epoch: 2 step: 5004, loss is 3.740064
- epoch: 3 step: 5004, loss is 4.0546017
- epoch: 4 step: 5004, loss is 3.7598825
- epoch: 5 step: 5004, loss is 3.3744206
- ......
- ```
-
- ### Infer
-
- #### Usage
-
- ```
- # infer
- Usage: sh run_eval.sh [DATASET_PATH] [CHECKPOINT_PATH]
- ```
-
- #### Launch
-
- ```bash
- # infer with checkpoint
- sh run_eval.sh dataset/ilsvrc_eval train_parallel0/resnet-42_5004.ckpt
- ```
-
- > checkpoint can be produced in training process.
-
- #### Result
-
- Inference result will be stored in the example path, whose folder name is "infer". Under this, you can find result like the followings in log.
-
- ```
- result: {'acc': 0.759503041} ckpt=train_parallel0/resnet-42_5004.ckpt
- ```
|