|
12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485 |
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ==============================================================================
- import pytest
- import numpy as np
- import mindspore.nn as nn
- import mindspore.ops.operations as P
- import mindspore.ops.functional as F
- from mindspore import context, Tensor
- from mindspore.common import dtype as mstype
-
- context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
-
-
- class NpuFloatNet(nn.Cell):
- """ NpuFloat definition, base on the related code in test_math_ops.py."""
-
- def __init__(self):
- super(NpuFloatNet, self).__init__()
- self.mul = P.Mul()
- self.alloc_status = P.NPUAllocFloatStatus()
- self.get_status = P.NPUGetFloatStatus()
- self.clear_status = P.NPUClearFloatStatus()
- self.fill = P.Fill()
- self.shape_op = P.Shape()
- self.select = P.Select()
- self.less = P.Less()
- self.cast = P.Cast()
- self.dtype = P.DType()
- self.reduce_sum = P.ReduceSum(keep_dims=True)
- self.sub = P.Sub()
- self.neg = P.Neg()
-
- def construct(self, x):
- init = self.alloc_status()
- clear_status = self.clear_status(init)
- x = F.depend(x, clear_status) # let x depend on clear_status
- res = self.sub(x, self.neg(x))
- init = F.depend(init, res) # let get_status depend on res
- get_status = self.get_status(init)
- # let reduce_sum depend on get_statusk
- init = F.depend(init, get_status)
- flag_sum = self.reduce_sum(init, (0,))
- base = self.cast(self.fill(self.dtype(
- res), self.shape_op(res), 0.0), self.dtype(flag_sum))
- cond = self.less(base, flag_sum)
- out = self.select(cond, self.cast(base, self.dtype(res)), res)
- return out
-
-
- @pytest.mark.level0
- @pytest.mark.platform_arm_ascend_training
- @pytest.mark.platform_x86_ascend_training
- @pytest.mark.env_onecard
- def test_float_not_overflow():
- input_data = Tensor(np.full((8, 5, 3, 1), 655, dtype=np.float16), dtype=mstype.float16)
- net = NpuFloatNet()
- out = net(input_data)
- # not overflow, we should got expected output.
- expect = Tensor(np.full((8, 5, 3, 1), 655 * 2,
- dtype=np.float16), dtype=mstype.float16)
- np.testing.assert_array_equal(out.asnumpy(), expect.asnumpy())
-
-
- @pytest.mark.level0
- @pytest.mark.platform_arm_ascend_training
- @pytest.mark.platform_x86_ascend_training
- @pytest.mark.env_onecard
- def test_float_overflow():
- input_data = Tensor(np.full((8, 5, 3, 1), 65504, dtype=np.float16), dtype=mstype.float16)
- net = NpuFloatNet()
- out = net(input_data)
- # all zero if overflowed.
- assert np.all(out.asnumpy() == 0)
|