|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838 |
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ==============================================================================
- import pytest
- import numpy as np
- import mindspore.nn as nn
- from mindspore import context, Tensor
- from mindspore.ops import operations as P
- from mindspore.common import dtype as mstype
- from mindspore.common.parameter import Parameter
-
- context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
-
-
- class AdamNet(nn.Cell):
- def __init__(self, var, m, v):
- super(AdamNet, self).__init__()
- self.apply_adam = P.Adam()
- self.var = Parameter(var, name="var")
- self.m = Parameter(m, name="m")
- self.v = Parameter(v, name="v")
-
- def construct(self, beta1_power, beta2_power, lr, beta1, beta2, epsilon, grad):
- self.apply_adam(self.var, self.m, self.v, beta1_power,
- beta2_power, lr, beta1, beta2, epsilon, grad)
- return self.var, self.m, self.v
-
-
- @pytest.mark.level0
- @pytest.mark.platform_arm_ascend_training
- @pytest.mark.platform_x86_ascend_training
- @pytest.mark.env_onecard
- def test_apply_adam():
- var = Tensor(np.ones([3, 3, 3]).astype(np.float32))
- m = Tensor(np.ones([3, 3, 3]).astype(np.float32))
- v = Tensor(np.ones([3, 3, 3]).astype(np.float32))
- net = AdamNet(var, m, v)
-
- beta1_power = Tensor(0.9, mstype.float32)
- beta2_power = Tensor(0.999, mstype.float32)
- lr = Tensor(0.001, mstype.float32)
- beta1 = Tensor(0.9, mstype.float32)
- beta2 = Tensor(0.999, mstype.float32)
- epsilon = Tensor(1e-8, mstype.float32)
- grad = Tensor(np.random.rand(3, 3, 3).astype(np.float32))
- new_var, new_m, new_v = net(
- beta1_power, beta2_power, lr, beta1, beta2, epsilon, grad)
- assert ((new_var != var).any() and (new_m != m).any() and (new_v != v).any()), \
- "The results should be different!"
-
-
- class ApplyAdaMaxNet(nn.Cell):
- def __init__(self, val, m, v):
- super(ApplyAdaMaxNet, self).__init__()
- self.apply_ada_max = P.ApplyAdaMax()
- self.var = Parameter(val, name="var")
- self.m = Parameter(m, name="m")
- self.v = Parameter(v, name="v")
-
- def construct(self, beta1_power, lr, beta1, beta2, epsilon, grad):
- self.apply_ada_max(self.var, self.m, self.v,
- beta1_power, lr, beta1, beta2, epsilon, grad)
- return self.var, self.m, self.v
-
-
- @pytest.mark.level0
- @pytest.mark.platform_arm_ascend_training
- @pytest.mark.platform_x86_ascend_training
- @pytest.mark.env_onecard
- def test_apply_ada_max():
- var = Tensor(np.random.rand(3, 3).astype(np.float32))
- m = Tensor(np.random.rand(3, 3).astype(np.float32))
- v = Tensor(np.random.rand(3, 3).astype(np.float32))
- net = ApplyAdaMaxNet(var, m, v)
-
- beta1_power = Tensor(0.9, mstype.float32)
- lr = Tensor(0.001, mstype.float32)
- beta1 = Tensor(0.9, mstype.float32)
- beta2 = Tensor(0.99, mstype.float32)
- epsilon = Tensor(1e-10, mstype.float32)
- grad = Tensor(np.random.rand(3, 3).astype(np.float32))
- new_var, new_m, new_v = net(beta1_power, lr, beta1, beta2, epsilon, grad)
- assert ((new_var != var).any() and (new_m != m).any() and (new_v != v).any()), \
- "The results should be different!"
-
-
- class ApplyAdadeltaNet(nn.Cell):
- def __init__(self, var, accum, accum_update):
- super(ApplyAdadeltaNet, self).__init__()
- self.apply_adadelta = P.ApplyAdadelta()
- self.var = Parameter(var, name="var")
- self.accum = Parameter(accum, name="accum")
- self.accum_update = Parameter(accum_update, name="accum_update")
-
- def construct(self, lr, rho, epsilon, grad):
- self.apply_adadelta(self.var, self.accum,
- self.accum_update, lr, rho, epsilon, grad)
- return self.var, self.accum, self.accum_update
-
-
- @pytest.mark.level0
- @pytest.mark.platform_arm_ascend_training
- @pytest.mark.platform_x86_ascend_training
- @pytest.mark.env_onecard
- def test_apply_adadelta():
- var = Tensor(np.random.rand(3, 3).astype(np.float32))
- accum = Tensor(np.random.rand(3, 3).astype(np.float32))
- accum_update = Tensor(np.random.rand(3, 3).astype(np.float32))
- net = ApplyAdadeltaNet(var, accum, accum_update)
-
- lr = Tensor(0.001, mstype.float32)
- rho = Tensor(0.0, mstype.float32)
- epsilon = Tensor(1e-6, mstype.float32)
- grad = Tensor(np.random.rand(3, 3).astype(np.float32))
- new_var, new_accum, new_accum_update = net(lr, rho, epsilon, grad)
- assert ((new_var != var).any() and (new_accum != accum).any() and (new_accum_update != accum_update).any()), \
- "The results should be different!"
-
-
- class ApplyAdagrad(nn.Cell):
- def __init__(self, var, accum):
- super(ApplyAdagrad, self).__init__()
- self.apply_adagrad = P.ApplyAdagrad()
- self.var = Parameter(var, name="var")
- self.accum = Parameter(accum, name="accum")
-
- def construct(self, lr, grad):
- self.apply_adagrad(self.var, self.accum, lr, grad)
- return self.var, self.accum
-
-
- @pytest.mark.level0
- @pytest.mark.platform_arm_ascend_training
- @pytest.mark.platform_x86_ascend_training
- @pytest.mark.env_onecard
- def test_apply_adagrad():
- var = Tensor(np.random.rand(3, 3).astype(np.float32))
- accum = Tensor(np.random.rand(3, 3).astype(np.float32))
- net = ApplyAdagrad(var, accum)
-
- lr = Tensor(0.001, mstype.float32)
- grad = Tensor(np.random.rand(3, 3).astype(np.float32))
- new_var, new_accum = net(lr, grad)
- assert ((new_var != var).any() and (new_accum != accum).any()), \
- "The results should be different!"
-
-
- class ApplyAdagradV2Net(nn.Cell):
- def __init__(self, var, accum):
- super(ApplyAdagradV2Net, self).__init__()
- self.apply_adagrad_v2 = P.ApplyAdagradV2(epsilon=1e-6)
- self.var = Parameter(var, name="var")
- self.accum = Parameter(accum, name="accum")
-
- def construct(self, lr, grad):
- self.apply_adagrad_v2(self.var, self.accum, lr, grad)
- return self.var, self.accum
-
-
- @pytest.mark.level0
- @pytest.mark.platform_arm_ascend_training
- @pytest.mark.platform_x86_ascend_training
- @pytest.mark.env_onecard
- def test_apply_adagrad_v2():
- var = Tensor(np.random.rand(3, 3).astype(np.float32))
- accum = Tensor(np.random.rand(3, 3).astype(np.float32))
- net = ApplyAdagradV2Net(var, accum)
-
- lr = Tensor(0.001, mstype.float32)
- grad = Tensor(np.random.rand(3, 3).astype(np.float32))
- new_var, new_accum = net(lr, grad)
- assert ((new_var != var).any() and (new_accum != accum).any()), \
- "The results should be different!"
-
-
- class ApplyAddSignNet(nn.Cell):
- def __init__(self, var, m):
- super(ApplyAddSignNet, self).__init__()
- self.apply_add_sign = P.ApplyAddSign()
- self.var = Parameter(var, name="var")
- self.m = Parameter(m, name="m")
-
- def construct(self, lr, alpha, sign_decay, beta, grad):
- self.apply_add_sign(self.var, self.m, lr, alpha,
- sign_decay, beta, grad)
- return self.var, self.m
-
-
- @pytest.mark.level0
- @pytest.mark.platform_arm_ascend_training
- @pytest.mark.platform_x86_ascend_training
- @pytest.mark.env_onecard
- def test_apply_add_sign():
- var = Tensor(np.random.rand(3, 3).astype(np.float32))
- m = Tensor(np.random.rand(3, 3).astype(np.float32))
- net = ApplyAddSignNet(var, m)
-
- lr = Tensor(0.001, mstype.float32)
- alpha = Tensor(1.0, mstype.float32)
- sign_decay = Tensor(0.99, mstype.float32)
- beta = Tensor(0.9, mstype.float32)
- grad = Tensor(np.random.rand(3, 3).astype(np.float32))
- new_var, new_m = net(lr, alpha, sign_decay, beta, grad)
- assert ((new_var != var).any() and (new_m != m).any()), \
- "The results should be different!"
-
-
- class ApplyCenteredRMSPropNet(nn.Cell):
- def __init__(self, var):
- super(ApplyCenteredRMSPropNet, self).__init__()
- self.apply_centered_rms_prop = P.ApplyCenteredRMSProp()
- self.var = Parameter(var, name="var")
-
- def construct(self, mean_grad, mean_square, moment, grad, learning_rate):
- self.apply_centered_rms_prop(self.var, mean_grad, mean_square, moment, grad,
- learning_rate, 0.0, 1e-10, 0.05)
- return self.var
-
-
- @pytest.mark.level0
- @pytest.mark.platform_arm_ascend_training
- @pytest.mark.platform_x86_ascend_training
- @pytest.mark.env_onecard
- def test_apply_centered_rms_prop():
- var = Tensor(
- np.arange(-6, 6).astype(np.float32).reshape(2, 3, 2), mstype.float32)
- net = ApplyCenteredRMSPropNet(var)
-
- mean_grad = Tensor(np.arange(12).astype(
- np.float32).reshape(2, 3, 2), mstype.float32)
- mean_square = Tensor(
- np.arange(-8, 4).astype(np.float32).reshape(2, 3, 2), mstype.float32)
- moment = Tensor(np.arange(12).astype(
- np.float32).reshape(2, 3, 2), mstype.float32)
- grad = Tensor(np.arange(12).astype(
- np.float32).reshape(2, 3, 2), mstype.float32)
- learning_rate = Tensor(0.9, mstype.float32)
- new_var = net(mean_grad, mean_square, moment, grad, learning_rate)
- assert (new_var != var).any(), "The results should be different!"
-
-
- class ApplyFtrlNet(nn.Cell):
- def __init__(self, var, accum, linear):
- super(ApplyFtrlNet, self).__init__()
- self.apply_ftrl = P.ApplyFtrl()
- self.var = Parameter(var, name="var")
- self.accum = Parameter(accum, name="accum")
- self.linear = Parameter(linear, name="linear")
-
- def construct(self, grad, lr, l1, l2, lr_power):
- self.apply_ftrl(self.var, self.accum, self.linear,
- grad, lr, l1, l2, lr_power)
- return self.var, self.accum, self.linear
-
-
- @pytest.mark.level0
- @pytest.mark.platform_arm_ascend_training
- @pytest.mark.platform_x86_ascend_training
- @pytest.mark.env_onecard
- def test_apply_ftrl():
- var = Tensor(np.random.rand(3, 3).astype(np.float32))
- accum = Tensor(np.random.rand(3, 3).astype(np.float32))
- linear = Tensor(np.random.rand(3, 3).astype(np.float32))
- net = ApplyFtrlNet(var, accum, linear)
-
- grad = Tensor(np.random.randint(-4, 4, (3, 3)), mstype.float32)
- lr = Tensor(0.001, mstype.float32)
- l1 = Tensor(0.0, mstype.float32)
- l2 = Tensor(0.0, mstype.float32)
- lr_power = Tensor(-0.5, mstype.float32)
- new_var, new_accum, new_linear = net(grad, lr, l1, l2, lr_power)
- assert ((new_var != var).any() and (new_accum != accum).any() and (new_linear != linear).any()), \
- "The results should be different!"
-
-
- class ApplyGradientDescentNet(nn.Cell):
- def __init__(self, var):
- super(ApplyGradientDescentNet, self).__init__()
- self.apply_gradient_descent = P.ApplyGradientDescent()
- self.var = Parameter(var, name="var")
-
- def construct(self, alpha, delta):
- self.apply_gradient_descent(self.var, alpha, delta)
- return self.var
-
-
- @pytest.mark.level0
- @pytest.mark.platform_arm_ascend_training
- @pytest.mark.platform_x86_ascend_training
- @pytest.mark.env_onecard
- def test_apply_gradient_descent():
- var = Tensor(np.random.rand(3, 3).astype(np.float32))
- net = ApplyGradientDescentNet(var)
-
- alpha = Tensor(0.001, mstype.float32)
- delta = Tensor(np.random.rand(3, 3).astype(np.float32))
- new_var = net(alpha, delta)
- assert (new_var != var).any(), "The results should be different!"
-
-
- class ApplyMomentumNet(nn.Cell):
- def __init__(self, var, accum):
- super(ApplyMomentumNet, self).__init__()
- self.apply_momentum = P.ApplyMomentum(gradient_scale=1024.0)
- self.var = Parameter(var, name='var')
- self.accum = Parameter(accum, name='accum')
-
- def construct(self, lr, grad, momentum):
- self.apply_momentum(self.var, self.accum, lr, grad, momentum)
- return self.var, self.accum
-
-
- @pytest.mark.level0
- @pytest.mark.platform_arm_ascend_training
- @pytest.mark.platform_x86_ascend_training
- @pytest.mark.env_onecard
- def test_apply_momentum():
- var = Tensor(np.random.normal(size=(2, 3, 3, 4)).astype(np.float32))
- accum = Tensor(np.random.normal(size=(2, 3, 3, 4)).astype(np.float32))
- net = ApplyMomentumNet(var, accum)
-
- lr = Tensor(np.random.normal(size=(1,)).astype(np.float32))
- grad = Tensor(np.random.normal(size=(2, 3, 3, 4)).astype(np.float32))
- momentum = Tensor(np.random.normal(size=(1,)).astype(np.float32))
- new_var, new_accum = net(lr, grad, momentum)
- assert ((new_var != var).any() and (new_accum != accum).any()), \
- "The results should be different!"
-
-
- class ApplyPowerSignNet(nn.Cell):
- def __init__(self, var, m):
- super(ApplyPowerSignNet, self).__init__()
- self.apply_power_sign = P.ApplyPowerSign()
- self.var = Parameter(var, name="var")
- self.m = Parameter(m, name="m")
-
- def construct(self, lr, logbase, sign_decay, beta, grad):
- self.apply_power_sign(self.var, self.m, lr,
- logbase, sign_decay, beta, grad)
- return self.var, self.m
-
-
- @pytest.mark.level0
- @pytest.mark.platform_arm_ascend_training
- @pytest.mark.platform_x86_ascend_training
- @pytest.mark.env_onecard
- def test_apply_power_sign():
- var = Tensor(np.random.rand(3, 3).astype(np.float32))
- m = Tensor(np.random.rand(3, 3).astype(np.float32))
- net = ApplyPowerSignNet(var, m)
-
- lr = Tensor(0.001, mstype.float32)
- logbase = Tensor(np.e, mstype.float32)
- sign_decay = Tensor(0.99, mstype.float32)
- beta = Tensor(0.9, mstype.float32)
- grad = Tensor(np.random.rand(3, 3).astype(np.float32))
- new_var, new_m = net(lr, logbase, sign_decay, beta, grad)
- assert ((new_var != var).any() and (new_m != m).any()), \
- "The results should be different!"
-
-
- class ApplyProximalAdagradNet(nn.Cell):
- def __init__(self, var, accum):
- super(ApplyProximalAdagradNet, self).__init__()
- self.apply_proximal_adagrad = P.ApplyProximalAdagrad()
- self.var = Parameter(var, name="var")
- self.accum = Parameter(accum, name='accum')
-
- def construct(self, lr, l1, l2, grad):
- self.apply_proximal_adagrad(self.var, self.accum, lr, l1, l2, grad)
- return self.var, self.accum
-
-
- @pytest.mark.level0
- @pytest.mark.platform_arm_ascend_training
- @pytest.mark.platform_x86_ascend_training
- @pytest.mark.env_onecard
- def test_apply_proximal_adagrad():
- var = Tensor(np.random.rand(3, 3).astype(np.float32))
- accum = Tensor(np.random.rand(3, 3).astype(np.float32))
- net = ApplyProximalAdagradNet(var, accum)
-
- lr = Tensor(0.01, mstype.float32)
- l1 = Tensor(0.0, mstype.float32)
- l2 = Tensor(0.0, mstype.float32)
- grad = Tensor(np.random.rand(3, 3).astype(np.float32))
- new_var, new_accum = net(lr, l1, l2, grad)
- assert ((new_var != var).any() and (new_accum != accum).any()), \
- "The results should be different!"
-
-
- class ApplyProximalGradientDescentNet(nn.Cell):
- def __init__(self, var):
- super(ApplyProximalGradientDescentNet, self).__init__()
- self.apply_proximal_gradient_descent = P.ApplyProximalGradientDescent()
- self.var = Parameter(var, name="var")
-
- def construct(self, alpha, l1, l2, delta):
- self.apply_proximal_gradient_descent(self.var, alpha, l1, l2, delta)
- return self.var
-
-
- @pytest.mark.level0
- @pytest.mark.platform_arm_ascend_training
- @pytest.mark.platform_x86_ascend_training
- @pytest.mark.env_onecard
- def test_apply_proximal_gradient_descent():
- var = Tensor(np.random.rand(3, 3).astype(np.float32))
- net = ApplyProximalGradientDescentNet(var)
-
- alpha = Tensor(0.001, mstype.float32)
- l1 = Tensor(0.0, mstype.float32)
- l2 = Tensor(0.0, mstype.float32)
- delta = Tensor(np.random.rand(3, 3).astype(np.float32))
- new_var = net(alpha, l1, l2, delta)
- assert (new_var != var).any(), "The results should be different!"
-
-
- class ApplyRMSPropNet(nn.Cell):
- def __init__(self, var):
- super(ApplyRMSPropNet, self).__init__()
- self.apply_rms_prop = P.ApplyRMSProp()
- self.var = Parameter(var, name="var")
-
- def construct(self, mean_square, moment, learning_rate, grad):
- self.apply_rms_prop(self.var, mean_square, moment,
- learning_rate, grad, 0.0, 1e-10, 0.001)
- return self.var
-
-
- @pytest.mark.level0
- @pytest.mark.platform_arm_ascend_training
- @pytest.mark.platform_x86_ascend_training
- @pytest.mark.env_onecard
- def test_apply_rms_prop():
- var = Tensor(1., mstype.float32)
- net = ApplyRMSPropNet(var)
-
- mean_square = Tensor(2., mstype.float32)
- moment = Tensor(1., mstype.float32)
- learning_rate = Tensor(0.9, mstype.float32)
- grad = Tensor(2., mstype.float32)
- new_var = net(mean_square, moment, learning_rate, grad)
- assert (new_var != var).any(), "The results should be different!"
-
-
- class FusedSparseAdamNet(nn.Cell):
- def __init__(self, var, m, v):
- super(FusedSparseAdamNet, self).__init__()
- self.fused_sparse_adam = P.FusedSparseAdam()
- self.var = Parameter(var, name="var")
- self.m = Parameter(m, name="m")
- self.v = Parameter(v, name="v")
-
- def construct(self, beta1_power, beta2_power, lr, beta1, beta2, epsilon, grad, indices):
- self.fused_sparse_adam(self.var, self.m, self.v, beta1_power, beta2_power, lr, beta1, beta2,
- epsilon, grad, indices)
- return self.var, self.m, self.v
-
-
- @pytest.mark.level0
- @pytest.mark.platform_arm_ascend_training
- @pytest.mark.platform_x86_ascend_training
- @pytest.mark.env_onecard
- def test_fused_sparse_adam():
- var = Tensor(np.ones([3, 1, 2]).astype(np.float32))
- m = Tensor(np.ones([3, 1, 2]).astype(np.float32))
- v = Tensor(np.ones([3, 1, 2]).astype(np.float32))
- net = FusedSparseAdamNet(var, m, v)
-
- beta1_power = Tensor(0.9, mstype.float32)
- beta2_power = Tensor(0.999, mstype.float32)
- lr = Tensor(0.001, mstype.float32)
- beta1 = Tensor(0.9, mstype.float32)
- beta2 = Tensor(0.999, mstype.float32)
- epsilon = Tensor(1e-8, mstype.float32)
- gradient = Tensor(np.random.rand(2, 1, 2), mstype.float32)
- indices = Tensor([0, 1], mstype.int32)
- new_var, new_m, new_v = net(
- beta1_power, beta2_power, lr, beta1, beta2, epsilon, gradient, indices)
- assert ((new_var != var).any() and (new_m != m).any() and (new_v != v).any()), \
- "The results should be different!"
-
-
- class FusedSparseFtrlNet(nn.Cell):
- def __init__(self, var, accum, linear):
- super(FusedSparseFtrlNet, self).__init__()
- self.fused_sparse_ftrl = P.FusedSparseFtrl(
- lr=0.01, l1=0.0, l2=0.0, lr_power=-0.5)
- self.var = Parameter(var, name="var")
- self.accum = Parameter(accum, name="accum")
- self.linear = Parameter(linear, name="linear")
-
- def construct(self, grad, indices):
- self.fused_sparse_ftrl(self.var, self.accum,
- self.linear, grad, indices)
- return self.var, self.accum, self.linear
-
-
- @pytest.mark.level0
- @pytest.mark.platform_arm_ascend_training
- @pytest.mark.platform_x86_ascend_training
- @pytest.mark.env_onecard
- def test_fused_sparse_ftrl():
- var = Tensor(np.random.rand(3, 1, 2).astype(np.float32))
- accum = Tensor(np.random.rand(3, 1, 2).astype(np.float32))
- linear = Tensor(np.random.rand(3, 1, 2).astype(np.float32))
- net = FusedSparseFtrlNet(var, accum, linear)
-
- grad = Tensor(np.random.rand(2, 1, 2).astype(np.float32))
- indices = Tensor(np.array([0, 1]).astype(np.int32))
- new_var, new_accum, new_linear = net(grad, indices)
- assert ((new_var != var).any() and (new_accum != accum).any() and (new_linear != linear).any()), \
- "The results should be different!"
-
-
- class FusedSparseLazyAdamNet(nn.Cell):
- def __init__(self, var, m, v):
- super(FusedSparseLazyAdamNet, self).__init__()
- self.fused_sparse_lazyadam = P.FusedSparseLazyAdam()
- self.var = Parameter(var, name="var")
- self.m = Parameter(m, name="m")
- self.v = Parameter(v, name="v")
-
- def construct(self, beta1_power, beta2_power, lr, beta1, beta2, epsilon, grad, indices):
- self.fused_sparse_lazyadam(self.var, self.m, self.v, beta1_power, beta2_power, lr, beta1,
- beta2, epsilon, grad, indices)
- return self.var, self.m, self.v
-
-
- @pytest.mark.level0
- @pytest.mark.platform_arm_ascend_training
- @pytest.mark.platform_x86_ascend_training
- @pytest.mark.env_onecard
- def test_fused_sparse_lazyadam():
- var = Tensor(np.ones([3, 1, 2]).astype(np.float32))
- m = Tensor(np.ones([3, 1, 2]).astype(np.float32))
- v = Tensor(np.ones([3, 1, 2]).astype(np.float32))
- net = FusedSparseLazyAdamNet(var, m, v)
-
- beta1_power = Tensor(0.9, mstype.float32)
- beta2_power = Tensor(0.999, mstype.float32)
- lr = Tensor(0.001, mstype.float32)
- beta1 = Tensor(0.9, mstype.float32)
- beta2 = Tensor(0.999, mstype.float32)
- epsilon = Tensor(1e-8, mstype.float32)
- gradient = Tensor(np.random.rand(2, 1, 2), mstype.float32)
- indices = Tensor([0, 1], mstype.int32)
- new_var, new_m, new_v = net(
- beta1_power, beta2_power, lr, beta1, beta2, epsilon, gradient, indices)
- assert ((new_var != var).any() and (new_m != m).any() and (new_v != v).any()), \
- "The results should be different!"
-
-
- class FusedSparseProximalAdagradNet(nn.Cell):
- def __init__(self, var, accum):
- super(FusedSparseProximalAdagradNet, self).__init__()
- self.fused_sparse_proximal_adagrad = P.FusedSparseProximalAdagrad()
- self.var = Parameter(var, name="var")
- self.accum = Parameter(accum, name="accum")
-
- def construct(self, lr, l1, l2, grad, indices):
- self.fused_sparse_proximal_adagrad(
- self.var, self.accum, lr, l1, l2, grad, indices)
- return self.var, self.accum
-
-
- @pytest.mark.level0
- @pytest.mark.platform_arm_ascend_training
- @pytest.mark.platform_x86_ascend_training
- @pytest.mark.env_onecard
- def test_fused_sparse_proximal_adagrad():
- var = Tensor(np.random.rand(3, 1, 2).astype(np.float32))
- accum = Tensor(np.random.rand(3, 1, 2).astype(np.float32))
- net = FusedSparseProximalAdagradNet(var, accum)
-
- lr = Tensor(0.01, mstype.float32)
- l1 = Tensor(0.0, mstype.float32)
- l2 = Tensor(0.0, mstype.float32)
- grad = Tensor(np.random.rand(2, 1, 2).astype(np.float32))
- indices = Tensor(np.array([0, 1]).astype(np.int32))
- new_var, new_accum = net(lr, l1, l2, grad, indices)
- assert ((new_var != var).any() and (new_accum != accum).any()), \
- "The results should be different!"
-
-
- class SparseApplyAdagradNet(nn.Cell):
- def __init__(self, var, accum):
- super(SparseApplyAdagradNet, self).__init__()
- self.sparse_apply_adagrad = P.SparseApplyAdagrad(lr=0.01)
- self.var = Parameter(var, name="var")
- self.accum = Parameter(accum, name="accum")
-
- def construct(self, grad, indices):
- self.sparse_apply_adagrad(self.var, self.accum, grad, indices)
- return self.var, self.accum
-
-
- @pytest.mark.level0
- @pytest.mark.platform_arm_ascend_training
- @pytest.mark.platform_x86_ascend_training
- @pytest.mark.env_onecard
- def test_sparse_apply_adagrad():
- var = Tensor(np.random.rand(3, 3).astype(np.float32))
- accum = Tensor(np.random.rand(3, 3).astype(np.float32))
- net = SparseApplyAdagradNet(var, accum)
-
- grad = Tensor(np.random.rand(3, 3).astype(np.float32))
- indices = Tensor(np.ones((3,), np.int32))
- new_var, _ = net(grad, indices)
- # new_accum is equal to accum.
- assert (new_var != var).any(), "The results should be different!"
-
-
- class SparseApplyAdagradV2Net(nn.Cell):
- def __init__(self, var, accum):
- super(SparseApplyAdagradV2Net, self).__init__()
- self.sparse_apply_adagrad_v2 = P.SparseApplyAdagradV2(
- lr=0.01, epsilon=0.001)
- self.var = Parameter(var, name="var")
- self.accum = Parameter(accum, name="accum")
-
- def construct(self, grad, indices):
- self.sparse_apply_adagrad_v2(self.var, self.accum, grad, indices)
- return self.var, self.accum
-
-
- @pytest.mark.level0
- @pytest.mark.platform_arm_ascend_training
- @pytest.mark.platform_x86_ascend_training
- @pytest.mark.env_onecard
- def test_sparse_apply_adagrad_v2():
- var = Tensor(np.random.rand(3, 3).astype(np.float32))
- accum = Tensor(np.random.rand(3, 3).astype(np.float32))
- net = SparseApplyAdagradV2Net(var, accum)
-
- grad = grad = Tensor(np.random.rand(3, 3).astype(np.float32))
- indices = Tensor(np.ones((3,), np.int32))
- new_var, new_accum = net(grad, indices)
- assert ((new_var != var).any() and (new_accum != accum).any()), \
- "The results should be different!"
-
-
- class SparseApplyFtrlNet(nn.Cell):
- def __init__(self, var, accum, linear):
- super(SparseApplyFtrlNet, self).__init__()
- self.sparse_apply_ftrl = P.SparseApplyFtrl(
- lr=0.01, l1=0.0, l2=0.0, lr_power=-0.5)
- self.var = Parameter(var, name="var")
- self.accum = Parameter(accum, name="accum")
- self.linear = Parameter(linear, name="linear")
-
- def construct(self, grad, indices):
- self.sparse_apply_ftrl(self.var, self.accum,
- self.linear, grad, indices)
- return self.var, self.accum, self.linear
-
-
- @pytest.mark.level0
- @pytest.mark.platform_arm_ascend_training
- @pytest.mark.platform_x86_ascend_training
- @pytest.mark.env_onecard
- def test_sparse_apply_ftrl():
- var = Tensor(np.random.rand(3, 3).astype(np.float32))
- accum = Tensor(np.random.rand(3, 3).astype(np.float32))
- linear = Tensor(np.random.rand(3, 3).astype(np.float32))
- net = SparseApplyFtrlNet(var, accum, linear)
-
- grad = Tensor(np.random.rand(3, 3).astype(np.float32))
- indices = Tensor(np.ones((3,), np.int32))
- new_var, new_accum, new_linear = net(grad, indices)
- assert ((new_var != var).any() and (new_accum != accum).any() and (new_linear != linear).any()), \
- "The results should be different!"
-
-
- class SparseApplyFtrlV2Net(nn.Cell):
- def __init__(self, var, accum, linear):
- super(SparseApplyFtrlV2Net, self).__init__()
- self.sparse_apply_ftrl_v2 = P.SparseApplyFtrlV2(
- lr=0.01, l1=0.0, l2=0.0, l2_shrinkage=0.0, lr_power=-0.5)
- self.var = Parameter(var, name="var")
- self.accum = Parameter(accum, name="accum")
- self.linear = Parameter(linear, name="linear")
-
- def construct(self, grad, indices):
- self.sparse_apply_ftrl_v2(
- self.var, self.accum, self.linear, grad, indices)
- return self.var, self.accum, self.linear
-
-
- @pytest.mark.level0
- @pytest.mark.platform_arm_ascend_training
- @pytest.mark.platform_x86_ascend_training
- @pytest.mark.env_onecard
- def test_sparse_apply_ftrl_v2():
- var = Tensor(np.random.rand(3, 3).astype(np.float32))
- accum = Tensor(np.random.rand(3, 3).astype(np.float32))
- linear = Tensor(np.random.rand(3, 3).astype(np.float32))
- net = SparseApplyFtrlV2Net(var, accum, linear)
-
- grad = Tensor(np.random.rand(3, 3).astype(np.float32))
- indices = Tensor(np.ones((3,), np.int32))
- new_var, new_accum, new_linear = net(grad, indices)
- assert ((new_var != var).any() and (new_accum != accum).any() and (new_linear != linear).any()), \
- "The results should be different!"
-
-
- class SparseApplyProximalAdagradNet(nn.Cell):
- def __init__(self, var, accum):
- super(SparseApplyProximalAdagradNet, self).__init__()
- self.sparse_apply_proximal_adagrad = P.SparseApplyProximalAdagrad()
- self.var = Parameter(var, name="var")
- self.accum = Parameter(accum, name="accum")
-
- def construct(self, lr, l1, l2, grad, indices):
- self.sparse_apply_proximal_adagrad(
- self.var, self.accum, lr, l1, l2, grad, indices)
- return self.var, self.accum
-
-
- @pytest.mark.level0
- @pytest.mark.platform_arm_ascend_training
- @pytest.mark.platform_x86_ascend_training
- @pytest.mark.env_onecard
- def test_sparse_apply_proximal_adagrad():
- var = Tensor(np.random.rand(3, 3).astype(np.float32))
- accum = Tensor(np.random.rand(3, 3).astype(np.float32))
- net = SparseApplyProximalAdagradNet(var, accum)
-
- lr = Tensor(0.01, mstype.float32)
- l1 = Tensor(0.0, mstype.float32)
- l2 = Tensor(0.0, mstype.float32)
- grad = Tensor(np.random.rand(3, 3).astype(np.float32))
- indices = Tensor(np.ones((3,), np.int32))
- new_var, new_accum = net(lr, l1, l2, grad, indices)
- assert ((new_var != var).any() and (new_accum != accum).any()), \
- "The results should be different!"
-
-
- class SGDNet(nn.Cell):
- def __init__(self, var):
- super(SGDNet, self).__init__()
- self.sgd = P.SGD()
- self.var = Parameter(var, name="var")
-
- def construct(self, gradient, learning_rate, accum, momentum, stat):
- self.sgd(self.var, gradient, learning_rate, accum, momentum, stat)
- return self.var
-
-
- @pytest.mark.level0
- @pytest.mark.platform_arm_ascend_training
- @pytest.mark.platform_x86_ascend_training
- @pytest.mark.env_onecard
- def test_sgd():
- var = Tensor(np.array([2, -0.5, 1.7, 4]), mstype.float32)
- net = SGDNet(var)
-
- gradient = Tensor(np.array([1, -1, 0.5, 2]), mstype.float32)
- learning_rate = Tensor(0.01, mstype.float32)
- accum = Tensor(np.array([0.1, 0.3, -0.2, -0.1]), mstype.float32)
- momentum = Tensor(0.1, mstype.float32)
- stat = Tensor(np.array([1.5, -0.3, 0.2, -0.7]), mstype.float32)
- new_var = net(gradient, learning_rate, accum, momentum, stat)
- assert (new_var != var).any(), "The results should be different!"
-
-
- class ApplyProximalAdagradConstantNet(nn.Cell):
- def __init__(self, var, accum):
- super().__init__()
- self.depend = P.Depend()
- self.sparse_apply_proximal_adagrad = P.SparseApplyProximalAdagrad()
- self.var = Parameter(var, name="var")
- self.accum = Parameter(accum, name="accum")
- self.const = Tensor(9999, mstype.float32)
-
- def construct(self, lr, l1, l2, grad, indices):
- optimizer = self.sparse_apply_proximal_adagrad(
- self.var, self.accum, lr, l1, l2, grad, indices)
- return self.depend(self.const, optimizer)
-
-
- @pytest.mark.level0
- @pytest.mark.platform_arm_ascend_training
- @pytest.mark.platform_x86_ascend_training
- @pytest.mark.env_onecard
- def test_sparse_apply_proximal_adagrad_constant():
- var = Tensor(np.random.rand(3, 3).astype(np.float32))
- accum = Tensor(np.random.rand(3, 3).astype(np.float32))
- net = ApplyProximalAdagradConstantNet(var, accum)
- lr = Tensor(0.01, mstype.float32)
- l1 = Tensor(0.1, mstype.float32)
- l2 = Tensor(0.2, mstype.float32)
- grad = Tensor(np.random.rand(3, 3).astype(np.float32))
- indices = Tensor(np.ones((3,), np.int32))
- net(lr, l1, l2, grad, indices)
- assert (net.parameters_dict()['var'].data != var).any()
- assert (net.parameters_dict()['accum'].data != accum).any()
-
-
- class MulSGDNet(nn.Cell):
- def __init__(self, var):
- super().__init__()
- self.sgd = P.SGD()
- self.var = Parameter(var, name="var")
- self.mul = P.Mul()
-
- def construct(self, gradient, learning_rate, accum, momentum, stat):
- out = self.mul(self.var, self.var)
- self.sgd(self.var, gradient, learning_rate, accum, momentum, stat)
- return out
-
-
- @pytest.mark.level0
- @pytest.mark.platform_arm_ascend_training
- @pytest.mark.platform_x86_ascend_training
- @pytest.mark.env_onecard
- def test_mul_sgd():
- var = Tensor(np.array([2, -0.5, 1.7, 4]), mstype.float32)
- net = MulSGDNet(var)
- gradient = Tensor(np.array([1, -1, 0.5, 2]), mstype.float32)
- learning_rate = Tensor(0.01, mstype.float32)
- accum = Tensor(np.array([0.1, 0.3, -0.2, -0.1]), mstype.float32)
- momentum = Tensor(0.1, mstype.float32)
- stat = Tensor(np.array([1.5, -0.3, 0.2, -0.7]), mstype.float32)
- net(gradient, learning_rate, accum, momentum, stat)
- assert (net.parameters_dict()['var'].data != var).any()
|