You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

eval.py 2.7 kB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061
  1. # Copyright 2020 Huawei Technologies Co., Ltd
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. # ============================================================================
  15. """evaluate imagenet"""
  16. import argparse
  17. import os
  18. import mindspore.nn as nn
  19. from mindspore import context
  20. from mindspore.train.model import Model
  21. from mindspore.train.serialization import load_checkpoint, load_param_into_net
  22. from src.config import efficientnet_b0_config_gpu as cfg
  23. from src.dataset import create_dataset_val
  24. from src.efficientnet import efficientnet_b0
  25. from src.loss import LabelSmoothingCrossEntropy
  26. if __name__ == '__main__':
  27. parser = argparse.ArgumentParser(description='image classification evaluation')
  28. parser.add_argument('--checkpoint', type=str, default='', help='checkpoint of efficientnet (Default: None)')
  29. parser.add_argument('--data_path', type=str, default='', help='Dataset path')
  30. parser.add_argument('--platform', type=str, default='GPU', choices=('Ascend', 'GPU'), help='run platform')
  31. args_opt = parser.parse_args()
  32. if args_opt.platform == 'Ascend':
  33. device_id = int(os.getenv('DEVICE_ID'))
  34. context.set_context(device_id=device_id)
  35. context.set_context(mode=context.GRAPH_MODE, device_target=args_opt.platform)
  36. net = efficientnet_b0(num_classes=cfg.num_classes,
  37. drop_rate=cfg.drop,
  38. drop_connect_rate=cfg.drop_connect,
  39. global_pool=cfg.gp,
  40. bn_tf=cfg.bn_tf,
  41. )
  42. ckpt = load_checkpoint(args_opt.checkpoint)
  43. load_param_into_net(net, ckpt)
  44. net.set_train(False)
  45. val_data_url = os.path.join(args_opt.data_path, 'val')
  46. dataset = create_dataset_val(cfg.batch_size, val_data_url, workers=cfg.workers, distributed=False)
  47. loss = LabelSmoothingCrossEntropy(smooth_factor=cfg.smoothing)
  48. eval_metrics = {'Loss': nn.Loss(),
  49. 'Top1-Acc': nn.Top1CategoricalAccuracy(),
  50. 'Top5-Acc': nn.Top5CategoricalAccuracy()}
  51. model = Model(net, loss, optimizer=None, metrics=eval_metrics)
  52. metrics = model.eval(dataset)
  53. print("metric: ", metrics)