You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

eval.py 4.3 kB

5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990
  1. # Copyright 2020 Huawei Technologies Co., Ltd
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. # ============================================================================
  15. """
  16. #################train lstm example on aclImdb########################
  17. """
  18. import argparse
  19. import os
  20. import numpy as np
  21. from src.config import lstm_cfg, lstm_cfg_ascend
  22. from src.dataset import lstm_create_dataset, convert_to_mindrecord
  23. from src.lstm import SentimentNet
  24. from mindspore import Tensor, nn, Model, context
  25. from mindspore.nn import Accuracy, Recall, F1
  26. from mindspore.train.serialization import load_checkpoint, load_param_into_net
  27. if __name__ == '__main__':
  28. parser = argparse.ArgumentParser(description='MindSpore LSTM Example')
  29. parser.add_argument('--preprocess', type=str, default='false', choices=['true', 'false'],
  30. help='whether to preprocess data.')
  31. parser.add_argument('--aclimdb_path', type=str, default="./aclImdb",
  32. help='path where the dataset is stored.')
  33. parser.add_argument('--glove_path', type=str, default="./glove",
  34. help='path where the GloVe is stored.')
  35. parser.add_argument('--preprocess_path', type=str, default="./preprocess",
  36. help='path where the pre-process data is stored.')
  37. parser.add_argument('--ckpt_path', type=str, default=None,
  38. help='the checkpoint file path used to evaluate model.')
  39. parser.add_argument('--device_target', type=str, default="Ascend", choices=['GPU', 'CPU', 'Ascend'],
  40. help='the target device to run, support "GPU", "CPU". Default: "Ascend".')
  41. args = parser.parse_args()
  42. context.set_context(
  43. mode=context.GRAPH_MODE,
  44. save_graphs=False,
  45. device_target=args.device_target)
  46. if args.device_target == 'Ascend':
  47. cfg = lstm_cfg_ascend
  48. else:
  49. cfg = lstm_cfg
  50. if args.preprocess == "true":
  51. print("============== Starting Data Pre-processing ==============")
  52. convert_to_mindrecord(cfg.embed_size, args.aclimdb_path, args.preprocess_path, args.glove_path)
  53. embedding_table = np.loadtxt(os.path.join(args.preprocess_path, "weight.txt")).astype(np.float32)
  54. # DynamicRNN in this network on Ascend platform only support the condition that the shape of input_size
  55. # and hiddle_size is multiples of 16, this problem will be solved later.
  56. if args.device_target == 'Ascend':
  57. pad_num = int(np.ceil(cfg.embed_size / 16) * 16 - cfg.embed_size)
  58. if pad_num > 0:
  59. embedding_table = np.pad(embedding_table, [(0, 0), (0, pad_num)], 'constant')
  60. cfg.embed_size = int(np.ceil(cfg.embed_size / 16) * 16)
  61. network = SentimentNet(vocab_size=embedding_table.shape[0],
  62. embed_size=cfg.embed_size,
  63. num_hiddens=cfg.num_hiddens,
  64. num_layers=cfg.num_layers,
  65. bidirectional=cfg.bidirectional,
  66. num_classes=cfg.num_classes,
  67. weight=Tensor(embedding_table),
  68. batch_size=cfg.batch_size)
  69. loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean')
  70. ds_eval = lstm_create_dataset(args.preprocess_path, cfg.batch_size, training=False)
  71. model = Model(network, loss, metrics={'acc': Accuracy(), 'recall': Recall(), 'f1': F1()})
  72. print("============== Starting Testing ==============")
  73. param_dict = load_checkpoint(args.ckpt_path)
  74. load_param_into_net(network, param_dict)
  75. if args.device_target == "CPU":
  76. acc = model.eval(ds_eval, dataset_sink_mode=False)
  77. else:
  78. acc = model.eval(ds_eval)
  79. print("============== {} ==============".format(acc))