|
1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291 |
- /**
- * Copyright 2020 Huawei Technologies Co., Ltd
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- #include <fstream>
- #include <iostream>
- #include <memory>
- #include <vector>
- #include <string>
-
- #include "utils/log_adapter.h"
- #include "common/utils.h"
- #include "common/common.h"
- #include "gtest/gtest.h"
- #include "securec.h"
- #include "minddata/dataset/include/datasets.h"
- #include "minddata/dataset/include/status.h"
- #include "minddata/dataset/include/transforms.h"
- #include "minddata/dataset/include/iterator.h"
- #include "minddata/dataset/core/constants.h"
- #include "minddata/dataset/core/tensor_shape.h"
- #include "minddata/dataset/core/tensor.h"
- #include "minddata/dataset/include/samplers.h"
- #include "minddata/dataset/engine/datasetops/source/voc_op.h"
-
-
- using namespace mindspore::dataset::api;
- using mindspore::MsLogLevel::ERROR;
- using mindspore::ExceptionType::NoExceptionType;
- using mindspore::LogStream;
- using mindspore::dataset::Tensor;
- using mindspore::dataset::TensorShape;
- using mindspore::dataset::TensorImpl;
- using mindspore::dataset::DataType;
- using mindspore::dataset::Status;
- using mindspore::dataset::BorderType;
-
-
- class MindDataTestPipeline : public UT::DatasetOpTesting {
- protected:
- };
-
-
- TEST_F(MindDataTestPipeline, TestBatchAndRepeat) {
- // Create a Mnist Dataset
- std::string folder_path = datasets_root_path_ + "/testMnistData/";
- std::shared_ptr<Dataset> ds = Mnist(folder_path, RandomSampler(false, 10));
- EXPECT_NE(ds, nullptr);
-
- // Create a Repeat operation on ds
- int32_t repeat_num = 2;
- ds = ds->Repeat(repeat_num);
- EXPECT_NE(ds, nullptr);
-
- // Create a Batch operation on ds
- int32_t batch_size = 2;
- ds = ds->Batch(batch_size);
- EXPECT_NE(ds, nullptr);
-
- // Create an iterator over the result of the above dataset
- // This will trigger the creation of the Execution Tree and launch it.
- std::shared_ptr<Iterator> iter = ds->CreateIterator();
- EXPECT_NE(iter, nullptr);
-
- // Iterate the dataset and get each row
- std::unordered_map<std::string, std::shared_ptr<Tensor>> row;
- iter->GetNextRow(&row);
-
- uint64_t i = 0;
- while (row.size() != 0) {
- i++;
- auto image = row["image"];
- MS_LOG(INFO) << "Tensor image shape: " << image->shape();
- iter->GetNextRow(&row);
- }
-
- EXPECT_EQ(i, 10);
-
- // Manually terminate the pipeline
- iter->Stop();
- }
-
- TEST_F(MindDataTestPipeline, TestMnistFail1) {
- // Create a Mnist Dataset
- std::shared_ptr<Dataset> ds = Mnist("", RandomSampler(false, 10));
- EXPECT_EQ(ds, nullptr);
- }
-
- TEST_F(MindDataTestPipeline, TestTensorOpsAndMap) {
- // Create a Mnist Dataset
- std::string folder_path = datasets_root_path_ + "/testMnistData/";
- std::shared_ptr<Dataset> ds = Mnist(folder_path, RandomSampler(false, 20));
- EXPECT_NE(ds, nullptr);
-
- // Create a Repeat operation on ds
- int32_t repeat_num = 2;
- ds = ds->Repeat(repeat_num);
- EXPECT_NE(ds, nullptr);
-
- // Create objects for the tensor ops
- std::shared_ptr<TensorOperation> resize_op = vision::Resize({30, 30});
- EXPECT_NE(resize_op, nullptr);
-
- std::shared_ptr<TensorOperation> center_crop_op = vision::CenterCrop({16, 16});
- EXPECT_NE(center_crop_op, nullptr);
-
- // Create a Map operation on ds
- ds = ds->Map({resize_op, center_crop_op});
- EXPECT_NE(ds, nullptr);
-
- // Create a Batch operation on ds
- int32_t batch_size = 1;
- ds = ds->Batch(batch_size);
- EXPECT_NE(ds, nullptr);
-
- // Create an iterator over the result of the above dataset
- // This will trigger the creation of the Execution Tree and launch it.
- std::shared_ptr<Iterator> iter = ds->CreateIterator();
- EXPECT_NE(iter, nullptr);
-
- // Iterate the dataset and get each row
- std::unordered_map<std::string, std::shared_ptr<Tensor>> row;
- iter->GetNextRow(&row);
-
- uint64_t i = 0;
- while (row.size() != 0) {
- i++;
- auto image = row["image"];
- MS_LOG(INFO) << "Tensor image shape: " << image->shape();
- iter->GetNextRow(&row);
- }
-
- EXPECT_EQ(i, 40);
-
- // Manually terminate the pipeline
- iter->Stop();
- }
-
- TEST_F(MindDataTestPipeline, TestUniformAugWithOps) {
- // Create a Mnist Dataset
- std::string folder_path = datasets_root_path_ + "/testMnistData/";
- std::shared_ptr<Dataset> ds = Mnist(folder_path, RandomSampler(false, 20));
- EXPECT_NE(ds, nullptr);
-
- // Create a Repeat operation on ds
- int32_t repeat_num = 1;
- ds = ds->Repeat(repeat_num);
- EXPECT_NE(ds, nullptr);
-
- // Create objects for the tensor ops
- std::shared_ptr<TensorOperation> resize_op = vision::Resize({30, 30});
- EXPECT_NE(resize_op, nullptr);
-
- std::shared_ptr<TensorOperation> random_crop_op = vision::RandomCrop({28, 28});
- EXPECT_NE(random_crop_op, nullptr);
-
- std::shared_ptr<TensorOperation> center_crop_op = vision::CenterCrop({16, 16});
- EXPECT_NE(center_crop_op, nullptr);
-
- std::shared_ptr<TensorOperation> uniform_aug_op = vision::UniformAugment({random_crop_op, center_crop_op}, 2);
- EXPECT_NE(uniform_aug_op, nullptr);
-
- // Create a Map operation on ds
- ds = ds->Map({resize_op, uniform_aug_op});
- EXPECT_NE(ds, nullptr);
-
- // Create an iterator over the result of the above dataset
- // This will trigger the creation of the Execution Tree and launch it.
- std::shared_ptr<Iterator> iter = ds->CreateIterator();
- EXPECT_NE(iter, nullptr);
-
- // Iterate the dataset and get each row
- std::unordered_map<std::string, std::shared_ptr<Tensor>> row;
- iter->GetNextRow(&row);
-
- uint64_t i = 0;
- while (row.size() != 0) {
- i++;
- auto image = row["image"];
- MS_LOG(INFO) << "Tensor image shape: " << image->shape();
- iter->GetNextRow(&row);
- }
-
- EXPECT_EQ(i, 20);
-
- // Manually terminate the pipeline
- iter->Stop();
- }
-
- TEST_F(MindDataTestPipeline, TestRandomFlip) {
- // Create an ImageFolder Dataset
- std::string folder_path = datasets_root_path_ + "/testPK/data/";
- std::shared_ptr<Dataset> ds = ImageFolder(folder_path, true, RandomSampler(false, 10));
- EXPECT_NE(ds, nullptr);
-
- // Create a Repeat operation on ds
- int32_t repeat_num = 2;
- ds = ds->Repeat(repeat_num);
- EXPECT_NE(ds, nullptr);
-
- // Create objects for the tensor ops
- std::shared_ptr<TensorOperation> random_vertical_flip_op = vision::RandomVerticalFlip(0.5);
- EXPECT_NE(random_vertical_flip_op, nullptr);
-
- std::shared_ptr<TensorOperation> random_horizontal_flip_op = vision::RandomHorizontalFlip(0.5);
- EXPECT_NE(random_horizontal_flip_op, nullptr);
-
- // Create a Map operation on ds
- ds = ds->Map({random_vertical_flip_op, random_horizontal_flip_op});
- EXPECT_NE(ds, nullptr);
-
- // Create a Batch operation on ds
- int32_t batch_size = 1;
- ds = ds->Batch(batch_size);
- EXPECT_NE(ds, nullptr);
-
- // Create an iterator over the result of the above dataset
- // This will trigger the creation of the Execution Tree and launch it.
- std::shared_ptr<Iterator> iter = ds->CreateIterator();
- EXPECT_NE(iter, nullptr);
-
- // Iterate the dataset and get each row
- std::unordered_map<std::string, std::shared_ptr<Tensor>> row;
- iter->GetNextRow(&row);
-
- uint64_t i = 0;
- while (row.size() != 0) {
- i++;
- auto image = row["image"];
- MS_LOG(INFO) << "Tensor image shape: " << image->shape();
- iter->GetNextRow(&row);
- }
-
- EXPECT_EQ(i, 20);
-
- // Manually terminate the pipeline
- iter->Stop();
- }
-
- TEST_F(MindDataTestPipeline, TestImageFolderBatchAndRepeat) {
- // Create an ImageFolder Dataset
- std::string folder_path = datasets_root_path_ + "/testPK/data/";
- std::shared_ptr<Dataset> ds = ImageFolder(folder_path, true, RandomSampler(false, 10));
- EXPECT_NE(ds, nullptr);
-
- // Create a Repeat operation on ds
- int32_t repeat_num = 2;
- ds = ds->Repeat(repeat_num);
- EXPECT_NE(ds, nullptr);
-
- // Create a Batch operation on ds
- int32_t batch_size = 2;
- ds = ds->Batch(batch_size);
- EXPECT_NE(ds, nullptr);
-
- // Create an iterator over the result of the above dataset
- // This will trigger the creation of the Execution Tree and launch it.
- std::shared_ptr<Iterator> iter = ds->CreateIterator();
- EXPECT_NE(iter, nullptr);
-
- // Iterate the dataset and get each row
- std::unordered_map<std::string, std::shared_ptr<Tensor>> row;
- iter->GetNextRow(&row);
-
- uint64_t i = 0;
- while (row.size() != 0) {
- i++;
- auto image = row["image"];
- MS_LOG(INFO) << "Tensor image shape: " << image->shape();
- iter->GetNextRow(&row);
- }
-
- EXPECT_EQ(i, 10);
-
- // Manually terminate the pipeline
- iter->Stop();
- }
-
- TEST_F(MindDataTestPipeline, TestImageFolderFail1) {
- // Create an ImageFolder Dataset
- std::shared_ptr<Dataset> ds = ImageFolder("", true, nullptr);
- EXPECT_EQ(ds, nullptr);
- }
-
- TEST_F(MindDataTestPipeline, TestImageFolderWithSamplers) {
- std::shared_ptr<SamplerObj> sampl = DistributedSampler(2, 1);
- EXPECT_NE(sampl, nullptr);
-
- sampl = PKSampler(3);
- EXPECT_NE(sampl, nullptr);
-
- sampl = RandomSampler(false, 12);
- EXPECT_NE(sampl, nullptr);
-
- sampl = SequentialSampler(0, 12);
- EXPECT_NE(sampl, nullptr);
-
- std::vector<double> weights = {0.9, 0.8, 0.68, 0.7, 0.71, 0.6, 0.5, 0.4, 0.3, 0.5, 0.2, 0.1};
- sampl = WeightedRandomSampler(weights, 12);
- EXPECT_NE(sampl, nullptr);
-
- std::vector<int64_t> indices = {1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23};
- sampl = SubsetRandomSampler(indices);
- EXPECT_NE(sampl, nullptr);
-
- // Create an ImageFolder Dataset
- std::string folder_path = datasets_root_path_ + "/testPK/data/";
- std::shared_ptr<Dataset> ds = ImageFolder(folder_path, false, sampl);
- EXPECT_NE(ds, nullptr);
-
- // Create a Repeat operation on ds
- int32_t repeat_num = 2;
- ds = ds->Repeat(repeat_num);
- EXPECT_NE(ds, nullptr);
-
- // Create a Batch operation on ds
- int32_t batch_size = 2;
- ds = ds->Batch(batch_size);
- EXPECT_NE(ds, nullptr);
-
- // Create an iterator over the result of the above dataset
- // This will trigger the creation of the Execution Tree and launch it.
- std::shared_ptr<Iterator> iter = ds->CreateIterator();
- EXPECT_NE(iter, nullptr);
-
- // Iterate the dataset and get each row
- std::unordered_map<std::string, std::shared_ptr<Tensor>> row;
- iter->GetNextRow(&row);
-
- uint64_t i = 0;
- while (row.size() != 0) {
- i++;
- auto image = row["image"];
- MS_LOG(INFO) << "Tensor image shape: " << image->shape();
- iter->GetNextRow(&row);
- }
-
- EXPECT_EQ(i, 12);
-
- // Manually terminate the pipeline
- iter->Stop();
- }
-
- TEST_F(MindDataTestPipeline, TestPad) {
- // Create an ImageFolder Dataset
- std::string folder_path = datasets_root_path_ + "/testPK/data/";
- std::shared_ptr<Dataset> ds = ImageFolder(folder_path, true, RandomSampler(false, 10));
- EXPECT_NE(ds, nullptr);
-
- // Create a Repeat operation on ds
- int32_t repeat_num = 2;
- ds = ds->Repeat(repeat_num);
- EXPECT_NE(ds, nullptr);
-
- // Create objects for the tensor ops
- std::shared_ptr<TensorOperation> pad_op1 = vision::Pad({1, 2, 3, 4}, {0}, BorderType::kSymmetric);
- EXPECT_NE(pad_op1, nullptr);
-
- std::shared_ptr<TensorOperation> pad_op2 = vision::Pad({1}, {1, 1, 1}, BorderType::kEdge);
- EXPECT_NE(pad_op2, nullptr);
-
- std::shared_ptr<TensorOperation> pad_op3 = vision::Pad({1, 4});
- EXPECT_NE(pad_op3, nullptr);
-
- // Create a Map operation on ds
- ds = ds->Map({pad_op1, pad_op2, pad_op3});
- EXPECT_NE(ds, nullptr);
-
- // Create a Batch operation on ds
- int32_t batch_size = 1;
- ds = ds->Batch(batch_size);
- EXPECT_NE(ds, nullptr);
-
- // Create an iterator over the result of the above dataset
- // This will trigger the creation of the Execution Tree and launch it.
- std::shared_ptr<Iterator> iter = ds->CreateIterator();
- EXPECT_NE(iter, nullptr);
-
- // Iterate the dataset and get each row
- std::unordered_map<std::string, std::shared_ptr<Tensor>> row;
- iter->GetNextRow(&row);
-
- uint64_t i = 0;
- while (row.size() != 0) {
- i++;
- auto image = row["image"];
- MS_LOG(INFO) << "Tensor image shape: " << image->shape();
- iter->GetNextRow(&row);
- }
-
- EXPECT_EQ(i, 20);
-
- // Manually terminate the pipeline
- iter->Stop();
- }
-
- TEST_F(MindDataTestPipeline, TestCutOut) {
- // Create an ImageFolder Dataset
- std::string folder_path = datasets_root_path_ + "/testPK/data/";
- std::shared_ptr<Dataset> ds = ImageFolder(folder_path, true, RandomSampler(false, 10));
- EXPECT_NE(ds, nullptr);
-
- // Create a Repeat operation on ds
- int32_t repeat_num = 2;
- ds = ds->Repeat(repeat_num);
- EXPECT_NE(ds, nullptr);
-
- // Create objects for the tensor ops
- std::shared_ptr<TensorOperation> cut_out1 = vision::CutOut(30, 5);
- EXPECT_NE(cut_out1, nullptr);
-
- std::shared_ptr<TensorOperation> cut_out2 = vision::CutOut(30);
- EXPECT_NE(cut_out2, nullptr);
-
- // Create a Map operation on ds
- ds = ds->Map({cut_out1, cut_out2});
- EXPECT_NE(ds, nullptr);
-
- // Create a Batch operation on ds
- int32_t batch_size = 1;
- ds = ds->Batch(batch_size);
- EXPECT_NE(ds, nullptr);
-
- // Create an iterator over the result of the above dataset
- // This will trigger the creation of the Execution Tree and launch it.
- std::shared_ptr<Iterator> iter = ds->CreateIterator();
- EXPECT_NE(iter, nullptr);
-
- // Iterate the dataset and get each row
- std::unordered_map<std::string, std::shared_ptr<Tensor>> row;
- iter->GetNextRow(&row);
-
- uint64_t i = 0;
- while (row.size() != 0) {
- i++;
- auto image = row["image"];
- MS_LOG(INFO) << "Tensor image shape: " << image->shape();
- iter->GetNextRow(&row);
- }
-
- EXPECT_EQ(i, 20);
-
- // Manually terminate the pipeline
- iter->Stop();
- }
-
- TEST_F(MindDataTestPipeline, TestNormalize) {
- // Create an ImageFolder Dataset
- std::string folder_path = datasets_root_path_ + "/testPK/data/";
- std::shared_ptr<Dataset> ds = ImageFolder(folder_path, true, RandomSampler(false, 10));
- EXPECT_NE(ds, nullptr);
-
- // Create a Repeat operation on ds
- int32_t repeat_num = 2;
- ds = ds->Repeat(repeat_num);
- EXPECT_NE(ds, nullptr);
-
- // Create objects for the tensor ops
- std::shared_ptr<TensorOperation> normalize = vision::Normalize({121.0, 115.0, 100.0}, {70.0, 68.0, 71.0});
- EXPECT_NE(normalize, nullptr);
-
- // Create a Map operation on ds
- ds = ds->Map({normalize});
- EXPECT_NE(ds, nullptr);
-
- // Create a Batch operation on ds
- int32_t batch_size = 1;
- ds = ds->Batch(batch_size);
- EXPECT_NE(ds, nullptr);
-
- // Create an iterator over the result of the above dataset
- // This will trigger the creation of the Execution Tree and launch it.
- std::shared_ptr<Iterator> iter = ds->CreateIterator();
- EXPECT_NE(iter, nullptr);
-
- // Iterate the dataset and get each row
- std::unordered_map<std::string, std::shared_ptr<Tensor>> row;
- iter->GetNextRow(&row);
-
- uint64_t i = 0;
- while (row.size() != 0) {
- i++;
- auto image = row["image"];
- MS_LOG(INFO) << "Tensor image shape: " << image->shape();
- iter->GetNextRow(&row);
- }
-
- EXPECT_EQ(i, 20);
-
- // Manually terminate the pipeline
- iter->Stop();
- }
-
- TEST_F(MindDataTestPipeline, TestDecode) {
- // Create an ImageFolder Dataset
- std::string folder_path = datasets_root_path_ + "/testPK/data/";
- std::shared_ptr<Dataset> ds = ImageFolder(folder_path, false, RandomSampler(false, 10));
- EXPECT_NE(ds, nullptr);
-
- // Create a Repeat operation on ds
- int32_t repeat_num = 2;
- ds = ds->Repeat(repeat_num);
- EXPECT_NE(ds, nullptr);
-
- // Create objects for the tensor ops
- std::shared_ptr<TensorOperation> decode = vision::Decode(true);
- EXPECT_NE(decode, nullptr);
-
- // Create a Map operation on ds
- ds = ds->Map({decode});
- EXPECT_NE(ds, nullptr);
-
- // Create a Batch operation on ds
- int32_t batch_size = 1;
- ds = ds->Batch(batch_size);
- EXPECT_NE(ds, nullptr);
-
- // Create an iterator over the result of the above dataset
- // This will trigger the creation of the Execution Tree and launch it.
- std::shared_ptr<Iterator> iter = ds->CreateIterator();
- EXPECT_NE(iter, nullptr);
-
- // Iterate the dataset and get each row
- std::unordered_map<std::string, std::shared_ptr<Tensor>> row;
- iter->GetNextRow(&row);
-
- uint64_t i = 0;
- while (row.size() != 0) {
- i++;
- auto image = row["image"];
- MS_LOG(INFO) << "Tensor image shape: " << image->shape();
- iter->GetNextRow(&row);
- }
- EXPECT_EQ(i, 20);
-
- // Manually terminate the pipeline
- iter->Stop();
- }
-
- TEST_F(MindDataTestPipeline, TestShuffleDataset) {
- // Create an ImageFolder Dataset
- std::string folder_path = datasets_root_path_ + "/testPK/data/";
- std::shared_ptr<Dataset> ds = ImageFolder(folder_path, true, RandomSampler(false, 10));
- EXPECT_NE(ds, nullptr);
-
- // Create a Shuffle operation on ds
- int32_t shuffle_size = 10;
- ds = ds->Shuffle(shuffle_size);
- EXPECT_NE(ds, nullptr);
-
- // Create a Repeat operation on ds
- int32_t repeat_num = 2;
- ds = ds->Repeat(repeat_num);
- EXPECT_NE(ds, nullptr);
-
- // Create a Batch operation on ds
- int32_t batch_size = 2;
- ds = ds->Batch(batch_size);
- EXPECT_NE(ds, nullptr);
-
- // Create an iterator over the result of the above dataset
- // This will trigger the creation of the Execution Tree and launch it.
- std::shared_ptr<Iterator> iter = ds->CreateIterator();
- EXPECT_NE(iter, nullptr);
-
- // Iterate the dataset and get each row
- std::unordered_map<std::string, std::shared_ptr<Tensor>> row;
- iter->GetNextRow(&row);
-
- uint64_t i = 0;
- while (row.size() != 0) {
- i++;
- auto image = row["image"];
- MS_LOG(INFO) << "Tensor image shape: " << image->shape();
- iter->GetNextRow(&row);
- }
-
- EXPECT_EQ(i, 10);
-
- // Manually terminate the pipeline
- iter->Stop();
- }
-
- TEST_F(MindDataTestPipeline, TestSkipDataset) {
- MS_LOG(INFO) << "Doing MindDataTestPipeline-TestSkipDataset.";
-
- // Create an ImageFolder Dataset
- std::string folder_path = datasets_root_path_ + "/testPK/data/";
- std::shared_ptr<Dataset> ds = ImageFolder(folder_path, true, RandomSampler(false, 10));
- EXPECT_NE(ds, nullptr);
-
- // Create a Skip operation on ds
- int32_t count = 3;
- ds = ds->Skip(count);
- EXPECT_NE(ds, nullptr);
-
- // Create an iterator over the result of the above dataset
- // This will trigger the creation of the Execution Tree and launch it.
- std::shared_ptr<Iterator> iter = ds->CreateIterator();
- EXPECT_NE(iter, nullptr);
-
- // Iterate the dataset and get each row
- std::unordered_map<std::string, std::shared_ptr<Tensor>> row;
- iter->GetNextRow(&row);
-
- uint64_t i = 0;
- while (row.size() != 0) {
- i++;
- auto image = row["image"];
- MS_LOG(INFO) << "Tensor image shape: " << image->shape();
- iter->GetNextRow(&row);
- }
- MS_LOG(INFO) << "Number of rows: " << i;
-
- // Expect 10-3=7 rows
- EXPECT_EQ(i, 7);
-
- // Manually terminate the pipeline
- iter->Stop();
- }
-
- TEST_F(MindDataTestPipeline, TestSkipDatasetError1) {
- MS_LOG(INFO) << "Doing MindDataTestPipeline-TestSkipDatasetError1.";
-
- // Create an ImageFolder Dataset
- std::string folder_path = datasets_root_path_ + "/testPK/data/";
- std::shared_ptr<Dataset> ds = ImageFolder(folder_path, true, RandomSampler(false, 10));
- EXPECT_NE(ds, nullptr);
-
- // Create a Skip operation on ds with invalid count input
- int32_t count = -1;
- ds = ds->Skip(count);
- // Expect nullptr for invalid input skip_count
- EXPECT_EQ(ds, nullptr);
- }
-
- TEST_F(MindDataTestPipeline, TestTakeDatasetDefault) {
- MS_LOG(INFO) << "Doing MindDataTestPipeline-TestTakeDatasetDefault.";
-
- // Create an ImageFolder Dataset
- std::string folder_path = datasets_root_path_ + "/testPK/data/";
- std::shared_ptr<Dataset> ds = ImageFolder(folder_path, true, RandomSampler(false, 7));
- EXPECT_NE(ds, nullptr);
-
- // Create a Take operation on ds, dafault count = -1
- ds = ds->Take();
- EXPECT_NE(ds, nullptr);
-
- // Create an iterator over the result of the above dataset
- // This will trigger the creation of the Execution Tree and launch it.
- std::shared_ptr<Iterator> iter = ds->CreateIterator();
- EXPECT_NE(iter, nullptr);
-
- // Iterate the dataset and get each row
- std::unordered_map<std::string, std::shared_ptr<Tensor>> row;
- iter->GetNextRow(&row);
-
- uint64_t i = 0;
- while (row.size() != 0) {
- i++;
- auto image = row["image"];
- MS_LOG(INFO) << "Tensor image shape: " << image->shape();
- iter->GetNextRow(&row);
- }
- MS_LOG(INFO) << "Number of rows: " << i;
-
- // Expect 7 rows
- EXPECT_EQ(i, 7);
-
- // Manually terminate the pipeline
- iter->Stop();
- }
-
- TEST_F(MindDataTestPipeline, TestTakeDatasetNormal) {
- MS_LOG(INFO) << "Doing MindDataTestPipeline-TestTakeDatasetNormal.";
-
- // Create an ImageFolder Dataset
- std::string folder_path = datasets_root_path_ + "/testPK/data/";
- std::shared_ptr<Dataset> ds = ImageFolder(folder_path, true, RandomSampler(false, 8));
- EXPECT_NE(ds, nullptr);
-
- // Create a Take operation on ds
- ds = ds->Take(5);
- EXPECT_NE(ds, nullptr);
-
- // Create an iterator over the result of the above dataset
- // This will trigger the creation of the Execution Tree and launch it.
- std::shared_ptr<Iterator> iter = ds->CreateIterator();
- EXPECT_NE(iter, nullptr);
-
- // Iterate the dataset and get each row
- std::unordered_map<std::string, std::shared_ptr<Tensor>> row;
- iter->GetNextRow(&row);
-
- uint64_t i = 0;
- while (row.size() != 0) {
- i++;
- auto image = row["image"];
- MS_LOG(INFO) << "Tensor image shape: " << image->shape();
- iter->GetNextRow(&row);
- }
- MS_LOG(INFO) << "Number of rows: " << i;
-
- // Expect 5 rows
- EXPECT_EQ(i, 5);
-
- // Manually terminate the pipeline
- iter->Stop();
- }
-
- TEST_F(MindDataTestPipeline, TestTakeDatasetError1) {
- MS_LOG(INFO) << "Doing MindDataTestPipeline-TestTakeDatasetError1.";
-
- // Create an ImageFolder Dataset
- std::string folder_path = datasets_root_path_ + "/testPK/data/";
- std::shared_ptr<Dataset> ds = ImageFolder(folder_path, true, RandomSampler(false, 10));
- EXPECT_NE(ds, nullptr);
-
- // Create a Take operation on ds with invalid count input
- int32_t count = -5;
- ds = ds->Take(count);
- // Expect nullptr for invalid input take_count
- EXPECT_EQ(ds, nullptr);
- }
-
- TEST_F(MindDataTestPipeline, TestCifar10Dataset) {
- // Create a Cifar10 Dataset
- std::string folder_path = datasets_root_path_ + "/testCifar10Data/";
- std::shared_ptr<Dataset> ds = Cifar10(folder_path, RandomSampler(false, 10));
- EXPECT_NE(ds, nullptr);
-
- // Create an iterator over the result of the above dataset
- // This will trigger the creation of the Execution Tree and launch it.
- std::shared_ptr<Iterator> iter = ds->CreateIterator();
- EXPECT_NE(iter, nullptr);
-
- // Iterate the dataset and get each row
- std::unordered_map<std::string, std::shared_ptr<Tensor>> row;
- iter->GetNextRow(&row);
-
- EXPECT_NE(row.find("image"), row.end());
- EXPECT_NE(row.find("label"), row.end());
-
- uint64_t i = 0;
- while (row.size() != 0) {
- i++;
- auto image = row["image"];
- MS_LOG(INFO) << "Tensor image shape: " << image->shape();
- iter->GetNextRow(&row);
- }
-
- EXPECT_EQ(i, 10);
-
- // Manually terminate the pipeline
- iter->Stop();
- }
-
- TEST_F(MindDataTestPipeline, TestCifar10DatasetFail1) {
-
- // Create a Cifar10 Dataset
- std::shared_ptr<Dataset> ds = Cifar10("", RandomSampler(false, 10));
- EXPECT_EQ(ds, nullptr);
- }
-
- TEST_F(MindDataTestPipeline, TestCifar100Dataset) {
-
- // Create a Cifar100 Dataset
- std::string folder_path = datasets_root_path_ + "/testCifar100Data/";
- std::shared_ptr<Dataset> ds = Cifar100(folder_path, RandomSampler(false, 10));
- EXPECT_NE(ds, nullptr);
-
- // Create an iterator over the result of the above dataset
- // This will trigger the creation of the Execution Tree and launch it.
- std::shared_ptr<Iterator> iter = ds->CreateIterator();
- EXPECT_NE(iter, nullptr);
-
- // Iterate the dataset and get each row
- std::unordered_map<std::string, std::shared_ptr<Tensor>> row;
- iter->GetNextRow(&row);
-
- EXPECT_NE(row.find("image"), row.end());
- EXPECT_NE(row.find("coarse_label"), row.end());
- EXPECT_NE(row.find("fine_label"), row.end());
-
- uint64_t i = 0;
- while (row.size() != 0) {
- i++;
- auto image = row["image"];
- MS_LOG(INFO) << "Tensor image shape: " << image->shape();
- iter->GetNextRow(&row);
- }
-
- EXPECT_EQ(i, 10);
-
- // Manually terminate the pipeline
- iter->Stop();
- }
-
- TEST_F(MindDataTestPipeline, TestCifar100DatasetFail1) {
-
- // Create a Cifar100 Dataset
- std::shared_ptr<Dataset> ds = Cifar100("", RandomSampler(false, 10));
- EXPECT_EQ(ds, nullptr);
- }
-
- TEST_F(MindDataTestPipeline, TestRandomColorAdjust) {
- // Create an ImageFolder Dataset
- std::string folder_path = datasets_root_path_ + "/testPK/data/";
- std::shared_ptr<Dataset> ds = ImageFolder(folder_path, true, RandomSampler(false, 10));
- EXPECT_NE(ds, nullptr);
-
- // Create a Repeat operation on ds
- int32_t repeat_num = 2;
- ds = ds->Repeat(repeat_num);
- EXPECT_NE(ds, nullptr);
-
- // Create objects for the tensor ops
- std::shared_ptr<TensorOperation> random_color_adjust1 = vision::RandomColorAdjust({1.0}, {0.0}, {0.5}, {0.5});
- EXPECT_NE(random_color_adjust1, nullptr);
-
- std::shared_ptr<TensorOperation> random_color_adjust2 = vision::RandomColorAdjust({1.0, 1.0}, {0.0, 0.0}, {0.5, 0.5},
- {0.5, 0.5});
- EXPECT_NE(random_color_adjust2, nullptr);
-
- std::shared_ptr<TensorOperation> random_color_adjust3 = vision::RandomColorAdjust({0.5, 1.0}, {0.0, 0.5}, {0.25, 0.5},
- {0.25, 0.5});
- EXPECT_NE(random_color_adjust3, nullptr);
-
- std::shared_ptr<TensorOperation> random_color_adjust4 = vision::RandomColorAdjust();
- EXPECT_NE(random_color_adjust4, nullptr);
-
- // Create a Map operation on ds
- ds = ds->Map({random_color_adjust1, random_color_adjust2, random_color_adjust3, random_color_adjust4});
- EXPECT_NE(ds, nullptr);
-
- // Create a Batch operation on ds
- int32_t batch_size = 1;
- ds = ds->Batch(batch_size);
- EXPECT_NE(ds, nullptr);
-
- // Create an iterator over the result of the above dataset
- // This will trigger the creation of the Execution Tree and launch it.
- std::shared_ptr<Iterator> iter = ds->CreateIterator();
- EXPECT_NE(iter, nullptr);
-
- // Iterate the dataset and get each row
- std::unordered_map<std::string, std::shared_ptr<Tensor>> row;
- iter->GetNextRow(&row);
-
- uint64_t i = 0;
- while (row.size() != 0) {
- i++;
- auto image = row["image"];
- MS_LOG(INFO) << "Tensor image shape: " << image->shape();
- iter->GetNextRow(&row);
- }
-
- EXPECT_EQ(i, 20);
-
- // Manually terminate the pipeline
- iter->Stop();
- }
-
- TEST_F(MindDataTestPipeline, TestRandomRotation) {
- // Create an ImageFolder Dataset
- std::string folder_path = datasets_root_path_ + "/testPK/data/";
- std::shared_ptr<Dataset> ds = ImageFolder(folder_path, true, RandomSampler(false, 10));
- EXPECT_NE(ds, nullptr);
-
- // Create a Repeat operation on ds
- int32_t repeat_num = 2;
- ds = ds->Repeat(repeat_num);
- EXPECT_NE(ds, nullptr);
-
- // Create objects for the tensor ops
- std::shared_ptr<TensorOperation> random_rotation_op = vision::RandomRotation({-180, 180});
- EXPECT_NE(random_rotation_op, nullptr);
-
- // Create a Map operation on ds
- ds = ds->Map({random_rotation_op});
- EXPECT_NE(ds, nullptr);
-
- // Create a Batch operation on ds
- int32_t batch_size = 1;
- ds = ds->Batch(batch_size);
- EXPECT_NE(ds, nullptr);
-
- // Create an iterator over the result of the above dataset
- // This will trigger the creation of the Execution Tree and launch it.
- std::shared_ptr<Iterator> iter = ds->CreateIterator();
- EXPECT_NE(iter, nullptr);
-
- // Iterate the dataset and get each row
- std::unordered_map<std::string, std::shared_ptr<Tensor>> row;
- iter->GetNextRow(&row);
-
- uint64_t i = 0;
- while (row.size() != 0) {
- i++;
- auto image = row["image"];
- MS_LOG(INFO) << "Tensor image shape: " << image->shape();
- iter->GetNextRow(&row);
- }
-
- EXPECT_EQ(i, 20);
-
- // Manually terminate the pipeline
- iter->Stop();
- }
-
- TEST_F(MindDataTestPipeline, TestProjectMap) {
- // Create an ImageFolder Dataset
- std::string folder_path = datasets_root_path_ + "/testPK/data/";
- std::shared_ptr<Dataset> ds = ImageFolder(folder_path, true, RandomSampler(false, 10));
- EXPECT_NE(ds, nullptr);
-
- // Create a Repeat operation on ds
- int32_t repeat_num = 2;
- ds = ds->Repeat(repeat_num);
- EXPECT_NE(ds, nullptr);
-
- // Create objects for the tensor ops
- std::shared_ptr<TensorOperation> random_vertical_flip_op = vision::RandomVerticalFlip(0.5);
- EXPECT_NE(random_vertical_flip_op, nullptr);
-
- // Create a Map operation on ds
- ds = ds->Map({random_vertical_flip_op}, {}, {}, {"image", "label"});
- EXPECT_NE(ds, nullptr);
-
- // Create a Project operation on ds
- std::vector<std::string> column_project = {"image"};
- ds = ds->Project(column_project);
- EXPECT_NE(ds, nullptr);
-
- // Create a Batch operation on ds
- int32_t batch_size = 1;
- ds = ds->Batch(batch_size);
- EXPECT_NE(ds, nullptr);
-
- // Create an iterator over the result of the above dataset
- // This will trigger the creation of the Execution Tree and launch it.
- std::shared_ptr<Iterator> iter = ds->CreateIterator();
- EXPECT_NE(iter, nullptr);
-
- // Iterate the dataset and get each row
- std::unordered_map<std::string, std::shared_ptr<Tensor>> row;
- iter->GetNextRow(&row);
-
- uint64_t i = 0;
- while (row.size() != 0) {
- i++;
- auto image = row["image"];
- MS_LOG(INFO) << "Tensor image shape: " << image->shape();
- iter->GetNextRow(&row);
- }
-
- EXPECT_EQ(i, 20);
-
- // Manually terminate the pipeline
- iter->Stop();
- }
-
- TEST_F(MindDataTestPipeline, TestZipSuccess) {
- // Create an ImageFolder Dataset
- std::string folder_path = datasets_root_path_ + "/testPK/data/";
- std::shared_ptr<Dataset> ds = ImageFolder(folder_path, true, RandomSampler(false, 10));
- EXPECT_NE(ds, nullptr);
-
- // Create a Project operation on ds
- std::vector<std::string> column_project = {"image"};
- ds = ds->Project(column_project);
- EXPECT_NE(ds, nullptr);
-
- // Create an ImageFolder Dataset
- std::shared_ptr<Dataset> ds1 = ImageFolder(folder_path, true, RandomSampler(false, 10));
- EXPECT_NE(ds1, nullptr);
-
- // Create a Rename operation on ds (so that the 3 datasets we are going to zip have distinct column names)
- ds1 = ds1->Rename({"image", "label"}, {"col1", "col2"});
- EXPECT_NE(ds1, nullptr);
-
- folder_path = datasets_root_path_ + "/testCifar10Data/";
- std::shared_ptr<Dataset> ds2 = Cifar10(folder_path, RandomSampler(false, 10));
- EXPECT_NE(ds2, nullptr);
-
- // Create a Project operation on ds
- column_project = {"label"};
- ds2 = ds2->Project(column_project);
- EXPECT_NE(ds2, nullptr);
-
- // Create a Zip operation on the datasets
- ds = ds->Zip({ds, ds1, ds2});
- EXPECT_NE(ds, nullptr);
-
- // Create a Batch operation on ds
- int32_t batch_size = 1;
- ds = ds->Batch(batch_size);
- EXPECT_NE(ds, nullptr);
-
- // Create an iterator over the result of the above dataset
- // This will trigger the creation of the Execution Tree and launch it.
- std::shared_ptr<Iterator> iter = ds->CreateIterator();
- EXPECT_NE(iter, nullptr);
-
- // Iterate the dataset and get each row
- std::unordered_map<std::string, std::shared_ptr<Tensor>> row;
- iter->GetNextRow(&row);
-
- uint64_t i = 0;
- while (row.size() != 0) {
- i++;
- auto image = row["image"];
- MS_LOG(INFO) << "Tensor image shape: " << image->shape();
- iter->GetNextRow(&row);
- }
-
- EXPECT_EQ(i, 10);
-
- // Manually terminate the pipeline
- iter->Stop();
- }
-
- TEST_F(MindDataTestPipeline, TestZipFail) {
- // We expect this test to fail because we are the both datasets we are zipping have "image" and "label" columns
- // and zip doesn't accept datasets with same column names
-
- // Create an ImageFolder Dataset
- std::string folder_path = datasets_root_path_ + "/testPK/data/";
- std::shared_ptr<Dataset> ds = ImageFolder(folder_path, true, RandomSampler(false, 10));
- EXPECT_NE(ds, nullptr);
-
- // Create an ImageFolder Dataset
- std::shared_ptr<Dataset> ds1 = ImageFolder(folder_path, true, RandomSampler(false, 10));
- EXPECT_NE(ds1, nullptr);
-
- // Create a Zip operation on the datasets
- ds = ds->Zip({ds, ds1});
- EXPECT_NE(ds, nullptr);
-
- // Create a Batch operation on ds
- int32_t batch_size = 1;
- ds = ds->Batch(batch_size);
- EXPECT_NE(ds, nullptr);
-
- // Create an iterator over the result of the above dataset
- // This will trigger the creation of the Execution Tree and launch it.
- std::shared_ptr<Iterator> iter = ds->CreateIterator();
- EXPECT_EQ(iter, nullptr);
- }
-
- TEST_F(MindDataTestPipeline, TestRenameSuccess) {
- // Create an ImageFolder Dataset
- std::string folder_path = datasets_root_path_ + "/testPK/data/";
- std::shared_ptr<Dataset> ds = ImageFolder(folder_path, true, RandomSampler(false, 10));
- EXPECT_NE(ds, nullptr);
-
- // Create a Repeat operation on ds
- int32_t repeat_num = 2;
- ds = ds->Repeat(repeat_num);
- EXPECT_NE(ds, nullptr);
-
- // Create a Rename operation on ds
- ds = ds->Rename({"image", "label"}, {"col1", "col2"});
- EXPECT_NE(ds, nullptr);
-
- // Create a Batch operation on ds
- int32_t batch_size = 1;
- ds = ds->Batch(batch_size);
- EXPECT_NE(ds, nullptr);
-
- // Create an iterator over the result of the above dataset
- // This will trigger the creation of the Execution Tree and launch it.
- std::shared_ptr<Iterator> iter = ds->CreateIterator();
- EXPECT_NE(iter, nullptr);
-
- // Iterate the dataset and get each row
- std::unordered_map<std::string, std::shared_ptr<Tensor>> row;
- iter->GetNextRow(&row);
-
- uint64_t i = 0;
- EXPECT_NE(row.find("col1"), row.end());
- EXPECT_NE(row.find("col2"), row.end());
- EXPECT_EQ(row.find("image"), row.end());
- EXPECT_EQ(row.find("label"), row.end());
-
- while (row.size() != 0) {
- i++;
- auto image = row["col1"];
- MS_LOG(INFO) << "Tensor image shape: " << image->shape();
- iter->GetNextRow(&row);
- }
-
- EXPECT_EQ(i, 20);
-
- // Manually terminate the pipeline
- iter->Stop();
- }
-
- TEST_F(MindDataTestPipeline, TestRenameFail) {
- // We expect this test to fail because input and output in Rename are not the same size
-
- // Create an ImageFolder Dataset
- std::string folder_path = datasets_root_path_ + "/testPK/data/";
- std::shared_ptr<Dataset> ds = ImageFolder(folder_path, true, RandomSampler(false, 10));
- EXPECT_NE(ds, nullptr);
-
- // Create a Repeat operation on ds
- int32_t repeat_num = 2;
- ds = ds->Repeat(repeat_num);
- EXPECT_NE(ds, nullptr);
-
- // Create a Rename operation on ds
- ds = ds->Rename({"image", "label"}, {"col2"});
- EXPECT_EQ(ds, nullptr);
- }
-
- TEST_F(MindDataTestPipeline, TestVOCSegmentation) {
- MS_LOG(INFO) << "Doing MindDataTestPipeline-TestVOCSegmentation.";
- // Create a VOC Dataset
- std::string folder_path = datasets_root_path_ + "/testVOC2012_2";
- std::shared_ptr<Dataset> ds = VOC(folder_path, "Segmentation", "train", {}, false, SequentialSampler(0, 3));
- EXPECT_NE(ds, nullptr);
-
- // Create a Repeat operation on ds
- int32_t repeat_num = 2;
- ds = ds->Repeat(repeat_num);
- EXPECT_NE(ds, nullptr);
-
- // Create an iterator over the result of the above dataset
- // This will trigger the creation of the Execution Tree and launch it.
- std::shared_ptr<Iterator> iter = ds->CreateIterator();
- EXPECT_NE(iter, nullptr);
-
- // Iterate the dataset and get each row
- std::unordered_map<std::string, std::shared_ptr<Tensor>> row;
- iter->GetNextRow(&row);
-
- // Check if VOCOp read correct images/targets
- using Tensor = mindspore::dataset::Tensor;
- std::string expect_file[] = {"32", "33", "39", "32", "33", "39"};
- uint64_t i = 0;
- while (row.size() != 0) {
- auto image = row["image"];
- auto target = row["target"];
- MS_LOG(INFO) << "Tensor image shape: " << image->shape();
- MS_LOG(INFO) << "Tensor target shape: " << target->shape();
-
- std::shared_ptr<Tensor> expect_image;
- Tensor::CreateFromFile(folder_path + "/JPEGImages/" + expect_file[i] + ".jpg", &expect_image);
- EXPECT_EQ(*image, *expect_image);
-
- std::shared_ptr<Tensor> expect_target;
- Tensor::CreateFromFile(folder_path + "/SegmentationClass/" + expect_file[i] + ".png", &expect_target);
- EXPECT_EQ(*target, *expect_target);
-
- iter->GetNextRow(&row);
- i++;
- }
-
- EXPECT_EQ(i, 6);
-
- // Manually terminate the pipeline
- iter->Stop();
- }
-
- TEST_F(MindDataTestPipeline, TestVOCSegmentationError1) {
- MS_LOG(INFO) << "Doing MindDataTestPipeline-TestVOCSegmentationError1.";
- // Create a VOC Dataset
- std::map<std::string, int32_t> class_index;
- class_index["car"] = 0;
- std::string folder_path = datasets_root_path_ + "/testVOC2012_2";
- std::shared_ptr<Dataset> ds = VOC(folder_path, "Segmentation", "train", class_index, false, RandomSampler(false, 6));
-
- // Expect nullptr for segmentation task with class_index
- EXPECT_EQ(ds, nullptr);
- }
-
- TEST_F(MindDataTestPipeline, TestVOCInvalidTaskOrMode) {
- MS_LOG(INFO) << "Doing MindDataTestPipeline-TestVOCInvalidTaskOrMode.";
- // Create a VOC Dataset
- std::string folder_path = datasets_root_path_ + "/testVOC2012_2";
- std::shared_ptr<Dataset> ds_1 = VOC(folder_path, "Classification", "train", {}, false, SequentialSampler(0, 3));
- // Expect nullptr for invalid task
- EXPECT_EQ(ds_1, nullptr);
-
- std::shared_ptr<Dataset> ds_2 = VOC(folder_path, "Segmentation", "validation", {}, false, RandomSampler(false, 4));
- // Expect nullptr for invalid mode
- EXPECT_EQ(ds_2, nullptr);
- }
-
- TEST_F(MindDataTestPipeline, TestVOCDetection) {
- MS_LOG(INFO) << "Doing MindDataTestPipeline-TestVOCDetection.";
- // Create a VOC Dataset
- std::string folder_path = datasets_root_path_ + "/testVOC2012_2";
- std::shared_ptr<Dataset> ds = VOC(folder_path, "Detection", "train", {}, false, SequentialSampler(0, 4));
- EXPECT_NE(ds, nullptr);
-
- // Create an iterator over the result of the above dataset
- // This will trigger the creation of the Execution Tree and launch it.
- std::shared_ptr<Iterator> iter = ds->CreateIterator();
- EXPECT_NE(iter, nullptr);
-
- // Iterate the dataset and get each row
- std::unordered_map<std::string, std::shared_ptr<Tensor>> row;
- iter->GetNextRow(&row);
-
- // Check if VOCOp read correct images/labels
- std::string expect_file[] = {"15", "32", "33", "39"};
- uint32_t expect_num[] = {5, 5, 4, 3};
- uint64_t i = 0;
- while (row.size() != 0) {
- auto image = row["image"];
- auto label = row["label"];
- MS_LOG(INFO) << "Tensor image shape: " << image->shape();
- MS_LOG(INFO) << "Tensor label shape: " << label->shape();
-
- std::shared_ptr<Tensor> expect_image;
- Tensor::CreateFromFile(folder_path + "/JPEGImages/" + expect_file[i] + ".jpg", &expect_image);
- EXPECT_EQ(*image, *expect_image);
-
- std::shared_ptr<Tensor> expect_label;
- Tensor::CreateFromMemory(TensorShape({1, 1}), DataType(DataType::DE_UINT32), nullptr, &expect_label);
- expect_label->SetItemAt({0, 0}, expect_num[i]);
- EXPECT_EQ(*label, *expect_label);
-
- iter->GetNextRow(&row);
- i++;
- }
-
- EXPECT_EQ(i, 4);
-
- // Manually terminate the pipeline
- iter->Stop();
- }
-
- TEST_F(MindDataTestPipeline, TestVOCClassIndex) {
- MS_LOG(INFO) << "Doing MindDataTestPipeline-TestVOCClassIndex.";
- // Create a VOC Dataset
- std::string folder_path = datasets_root_path_ + "/testVOC2012_2";
- std::map<std::string, int32_t> class_index;
- class_index["car"] = 0;
- class_index["cat"] = 1;
- class_index["train"] = 9;
-
- std::shared_ptr<Dataset> ds = VOC(folder_path, "Detection", "train", class_index, false, SequentialSampler(0, 6));
- EXPECT_NE(ds, nullptr);
-
- // Create an iterator over the result of the above dataset
- // This will trigger the creation of the Execution Tree and launch it.
- std::shared_ptr<Iterator> iter = ds->CreateIterator();
- EXPECT_NE(iter, nullptr);
-
- // Iterate the dataset and get each row
- std::unordered_map<std::string, std::shared_ptr<Tensor>> row;
- iter->GetNextRow(&row);
-
- // Check if VOCOp read correct labels
- // When we provide class_index, label of ["car","cat","train"] become [0,1,9]
- std::shared_ptr<Tensor> expect_label;
- Tensor::CreateFromMemory(TensorShape({1, 1}), DataType(DataType::DE_UINT32), nullptr, &expect_label);
-
- uint32_t expect[] = {9, 9, 9, 1, 1, 0};
- uint64_t i = 0;
- while (row.size() != 0) {
- auto image = row["image"];
- auto label = row["label"];
- MS_LOG(INFO) << "Tensor image shape: " << image->shape();
- MS_LOG(INFO) << "Tensor label shape: " << label->shape();
- expect_label->SetItemAt({0, 0}, expect[i]);
- EXPECT_EQ(*label, *expect_label);
-
- iter->GetNextRow(&row);
- i++;
- }
-
- EXPECT_EQ(i, 6);
-
- // Manually terminate the pipeline
- iter->Stop();
- }
|