You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

test_config.py 15 kB

5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369
  1. # Copyright 2019 Huawei Technologies Co., Ltd
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. # ==============================================================================
  15. """
  16. Testing configuration manager
  17. """
  18. import os
  19. import filecmp
  20. import glob
  21. import numpy as np
  22. import mindspore.dataset as ds
  23. import mindspore.dataset.transforms.vision.c_transforms as vision
  24. import mindspore.dataset.transforms.vision.py_transforms as py_vision
  25. from mindspore import log as logger
  26. DATA_DIR = ["../data/dataset/test_tf_file_3_images/train-0000-of-0001.data"]
  27. SCHEMA_DIR = "../data/dataset/test_tf_file_3_images/datasetSchema.json"
  28. def test_basic():
  29. """
  30. Test basic configuration functions
  31. """
  32. # Save original configuration values
  33. num_parallel_workers_original = ds.config.get_num_parallel_workers()
  34. prefetch_size_original = ds.config.get_prefetch_size()
  35. seed_original = ds.config.get_seed()
  36. monitor_sampling_interval_original = ds.config.get_monitor_sampling_interval()
  37. ds.config.load('../data/dataset/declient.cfg')
  38. # assert ds.config.get_rows_per_buffer() == 32
  39. assert ds.config.get_num_parallel_workers() == 4
  40. # assert ds.config.get_worker_connector_size() == 16
  41. assert ds.config.get_prefetch_size() == 16
  42. assert ds.config.get_seed() == 5489
  43. # assert ds.config.get_monitor_sampling_interval() == 15
  44. # ds.config.set_rows_per_buffer(1)
  45. ds.config.set_num_parallel_workers(2)
  46. # ds.config.set_worker_connector_size(3)
  47. ds.config.set_prefetch_size(4)
  48. ds.config.set_seed(5)
  49. ds.config.set_monitor_sampling_interval(45)
  50. # assert ds.config.get_rows_per_buffer() == 1
  51. assert ds.config.get_num_parallel_workers() == 2
  52. # assert ds.config.get_worker_connector_size() == 3
  53. assert ds.config.get_prefetch_size() == 4
  54. assert ds.config.get_seed() == 5
  55. assert ds.config.get_monitor_sampling_interval() == 45
  56. # Restore original configuration values
  57. ds.config.set_num_parallel_workers(num_parallel_workers_original)
  58. ds.config.set_prefetch_size(prefetch_size_original)
  59. ds.config.set_seed(seed_original)
  60. ds.config.set_monitor_sampling_interval(monitor_sampling_interval_original)
  61. def test_get_seed():
  62. """
  63. This gets the seed value without explicitly setting a default, expect int.
  64. """
  65. assert isinstance(ds.config.get_seed(), int)
  66. def test_pipeline():
  67. """
  68. Test that our configuration pipeline works when we set parameters at different locations in dataset code
  69. """
  70. # Save original configuration values
  71. num_parallel_workers_original = ds.config.get_num_parallel_workers()
  72. data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, shuffle=False)
  73. ds.config.set_num_parallel_workers(2)
  74. data1 = data1.map(input_columns=["image"], operations=[vision.Decode(True)])
  75. ds.serialize(data1, "testpipeline.json")
  76. data2 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, shuffle=False)
  77. ds.config.set_num_parallel_workers(4)
  78. data2 = data2.map(input_columns=["image"], operations=[vision.Decode(True)])
  79. ds.serialize(data2, "testpipeline2.json")
  80. # check that the generated output is different
  81. assert filecmp.cmp('testpipeline.json', 'testpipeline2.json')
  82. # this test passes currently because our num_parallel_workers don't get updated.
  83. # remove generated jason files
  84. file_list = glob.glob('*.json')
  85. for f in file_list:
  86. try:
  87. os.remove(f)
  88. except IOError:
  89. logger.info("Error while deleting: {}".format(f))
  90. # Restore original configuration values
  91. ds.config.set_num_parallel_workers(num_parallel_workers_original)
  92. def test_deterministic_run_fail():
  93. """
  94. Test RandomCrop with seed, expected to fail
  95. """
  96. logger.info("test_deterministic_run_fail")
  97. # Save original configuration values
  98. num_parallel_workers_original = ds.config.get_num_parallel_workers()
  99. seed_original = ds.config.get_seed()
  100. # when we set the seed all operations within our dataset should be deterministic
  101. ds.config.set_seed(0)
  102. ds.config.set_num_parallel_workers(1)
  103. # First dataset
  104. data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
  105. # Assuming we get the same seed on calling constructor, if this op is re-used then result won't be
  106. # the same in between the two datasets. For example, RandomCrop constructor takes seed (0)
  107. # outputs a deterministic series of numbers, e,g "a" = [1, 2, 3, 4, 5, 6] <- pretend these are random
  108. random_crop_op = vision.RandomCrop([512, 512], [200, 200, 200, 200])
  109. decode_op = vision.Decode()
  110. data1 = data1.map(input_columns=["image"], operations=decode_op)
  111. data1 = data1.map(input_columns=["image"], operations=random_crop_op)
  112. # Second dataset
  113. data2 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
  114. data2 = data2.map(input_columns=["image"], operations=decode_op)
  115. # If seed is set up on constructor
  116. data2 = data2.map(input_columns=["image"], operations=random_crop_op)
  117. try:
  118. for item1, item2 in zip(data1.create_dict_iterator(), data2.create_dict_iterator()):
  119. np.testing.assert_equal(item1["image"], item2["image"])
  120. except Exception as e:
  121. # two datasets split the number out of the sequence a
  122. logger.info("Got an exception in DE: {}".format(str(e)))
  123. assert "Array" in str(e)
  124. # Restore original configuration values
  125. ds.config.set_num_parallel_workers(num_parallel_workers_original)
  126. ds.config.set_seed(seed_original)
  127. def test_deterministic_run_pass():
  128. """
  129. Test deterministic run with setting the seed
  130. """
  131. logger.info("test_deterministic_run_pass")
  132. # Save original configuration values
  133. num_parallel_workers_original = ds.config.get_num_parallel_workers()
  134. seed_original = ds.config.get_seed()
  135. ds.config.set_seed(0)
  136. ds.config.set_num_parallel_workers(1)
  137. # First dataset
  138. data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
  139. # We get the seed when constructor is called
  140. random_crop_op = vision.RandomCrop([512, 512], [200, 200, 200, 200])
  141. decode_op = vision.Decode()
  142. data1 = data1.map(input_columns=["image"], operations=decode_op)
  143. data1 = data1.map(input_columns=["image"], operations=random_crop_op)
  144. # Second dataset
  145. data2 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
  146. data2 = data2.map(input_columns=["image"], operations=decode_op)
  147. # Since seed is set up on constructor, so the two ops output deterministic sequence.
  148. # Assume the generated random sequence "a" = [1, 2, 3, 4, 5, 6] <- pretend these are random
  149. random_crop_op2 = vision.RandomCrop([512, 512], [200, 200, 200, 200])
  150. data2 = data2.map(input_columns=["image"], operations=random_crop_op2)
  151. try:
  152. for item1, item2 in zip(data1.create_dict_iterator(), data2.create_dict_iterator()):
  153. np.testing.assert_equal(item1["image"], item2["image"])
  154. except Exception as e:
  155. # two datasets both use numbers from the generated sequence "a"
  156. logger.info("Got an exception in DE: {}".format(str(e)))
  157. assert "Array" in str(e)
  158. # Restore original configuration values
  159. ds.config.set_num_parallel_workers(num_parallel_workers_original)
  160. ds.config.set_seed(seed_original)
  161. def test_seed_undeterministic():
  162. """
  163. Test seed with num parallel workers in c, this test is expected to fail some of the time
  164. """
  165. logger.info("test_seed_undeterministic")
  166. # Save original configuration values
  167. num_parallel_workers_original = ds.config.get_num_parallel_workers()
  168. seed_original = ds.config.get_seed()
  169. ds.config.set_seed(0)
  170. ds.config.set_num_parallel_workers(1)
  171. # First dataset
  172. data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
  173. # seed will be read in during constructor call
  174. random_crop_op = vision.RandomCrop([512, 512], [200, 200, 200, 200])
  175. decode_op = vision.Decode()
  176. data1 = data1.map(input_columns=["image"], operations=decode_op)
  177. data1 = data1.map(input_columns=["image"], operations=random_crop_op)
  178. # Second dataset
  179. data2 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
  180. data2 = data2.map(input_columns=["image"], operations=decode_op)
  181. # If seed is set up on constructor, so the two ops output deterministic sequence
  182. random_crop_op2 = vision.RandomCrop([512, 512], [200, 200, 200, 200])
  183. data2 = data2.map(input_columns=["image"], operations=random_crop_op2)
  184. for item1, item2 in zip(data1.create_dict_iterator(), data2.create_dict_iterator()):
  185. np.testing.assert_equal(item1["image"], item2["image"])
  186. # Restore original configuration values
  187. ds.config.set_num_parallel_workers(num_parallel_workers_original)
  188. ds.config.set_seed(seed_original)
  189. def test_deterministic_run_distribution():
  190. """
  191. Test deterministic run with with setting the seed being used in a distribution
  192. """
  193. logger.info("test_deterministic_run_distribution")
  194. # Save original configuration values
  195. num_parallel_workers_original = ds.config.get_num_parallel_workers()
  196. seed_original = ds.config.get_seed()
  197. # when we set the seed all operations within our dataset should be deterministic
  198. ds.config.set_seed(0)
  199. ds.config.set_num_parallel_workers(1)
  200. # First dataset
  201. data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
  202. random_crop_op = vision.RandomHorizontalFlip(0.1)
  203. decode_op = vision.Decode()
  204. data1 = data1.map(input_columns=["image"], operations=decode_op)
  205. data1 = data1.map(input_columns=["image"], operations=random_crop_op)
  206. # Second dataset
  207. data2 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
  208. data2 = data2.map(input_columns=["image"], operations=decode_op)
  209. # If seed is set up on constructor, so the two ops output deterministic sequence
  210. random_crop_op2 = vision.RandomHorizontalFlip(0.1)
  211. data2 = data2.map(input_columns=["image"], operations=random_crop_op2)
  212. for item1, item2 in zip(data1.create_dict_iterator(), data2.create_dict_iterator()):
  213. np.testing.assert_equal(item1["image"], item2["image"])
  214. # Restore original configuration values
  215. ds.config.set_num_parallel_workers(num_parallel_workers_original)
  216. ds.config.set_seed(seed_original)
  217. def test_deterministic_python_seed():
  218. """
  219. Test deterministic execution with seed in python
  220. """
  221. logger.info("deterministic_random_crop_op_python_2")
  222. # Save original configuration values
  223. num_parallel_workers_original = ds.config.get_num_parallel_workers()
  224. seed_original = ds.config.get_seed()
  225. ds.config.set_seed(0)
  226. ds.config.set_num_parallel_workers(1)
  227. # First dataset
  228. data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
  229. transforms = [
  230. py_vision.Decode(),
  231. py_vision.RandomCrop([512, 512], [200, 200, 200, 200]),
  232. py_vision.ToTensor(),
  233. ]
  234. transform = py_vision.ComposeOp(transforms)
  235. data1 = data1.map(input_columns=["image"], operations=transform())
  236. data1_output = []
  237. # config.set_seed() calls random.seed()
  238. for data_one in data1.create_dict_iterator():
  239. data1_output.append(data_one["image"])
  240. # Second dataset
  241. data2 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
  242. data2 = data2.map(input_columns=["image"], operations=transform())
  243. # config.set_seed() calls random.seed(), resets seed for next dataset iterator
  244. ds.config.set_seed(0)
  245. data2_output = []
  246. for data_two in data2.create_dict_iterator():
  247. data2_output.append(data_two["image"])
  248. np.testing.assert_equal(data1_output, data2_output)
  249. # Restore original configuration values
  250. ds.config.set_num_parallel_workers(num_parallel_workers_original)
  251. ds.config.set_seed(seed_original)
  252. def test_deterministic_python_seed_multi_thread():
  253. """
  254. Test deterministic execution with seed in python, this fails with multi-thread pyfunc run
  255. """
  256. logger.info("deterministic_random_crop_op_python_2")
  257. # Save original configuration values
  258. seed_original = ds.config.get_seed()
  259. ds.config.set_seed(0)
  260. # when we set the seed all operations within our dataset should be deterministic
  261. # First dataset
  262. data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
  263. transforms = [
  264. py_vision.Decode(),
  265. py_vision.RandomCrop([512, 512], [200, 200, 200, 200]),
  266. py_vision.ToTensor(),
  267. ]
  268. transform = py_vision.ComposeOp(transforms)
  269. data1 = data1.map(input_columns=["image"], operations=transform(), python_multiprocessing=True)
  270. data1_output = []
  271. # config.set_seed() calls random.seed()
  272. for data_one in data1.create_dict_iterator():
  273. data1_output.append(data_one["image"])
  274. # Second dataset
  275. data2 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
  276. # If seed is set up on constructor
  277. data2 = data2.map(input_columns=["image"], operations=transform(), python_multiprocessing=True)
  278. # config.set_seed() calls random.seed()
  279. ds.config.set_seed(0)
  280. data2_output = []
  281. for data_two in data2.create_dict_iterator():
  282. data2_output.append(data_two["image"])
  283. try:
  284. np.testing.assert_equal(data1_output, data2_output)
  285. except Exception as e:
  286. # expect output to not match during multi-threaded excution
  287. logger.info("Got an exception in DE: {}".format(str(e)))
  288. assert "Array" in str(e)
  289. # Restore original configuration values
  290. ds.config.set_seed(seed_original)
  291. if __name__ == '__main__':
  292. test_basic()
  293. test_pipeline()
  294. test_deterministic_run_pass()
  295. test_deterministic_run_distribution()
  296. test_deterministic_run_fail()
  297. test_deterministic_python_seed()
  298. test_seed_undeterministic()
  299. test_get_seed()