You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

train.py 8.1 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199
  1. # Copyright 2020 Huawei Technologies Co., Ltd
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. # ============================================================================
  15. """Face Recognition train."""
  16. import os
  17. import time
  18. import argparse
  19. import datetime
  20. import warnings
  21. import random
  22. import numpy as np
  23. import mindspore
  24. from mindspore import context
  25. from mindspore import Tensor
  26. from mindspore.context import ParallelMode
  27. from mindspore.train.serialization import load_checkpoint, load_param_into_net
  28. from mindspore.train.callback import ModelCheckpoint, RunContext, _InternalCallbackParam, CheckpointConfig
  29. from mindspore.nn.optim import SGD
  30. from mindspore.nn import TrainOneStepCell
  31. from mindspore.communication.management import get_group_size, init, get_rank
  32. from src.dataset import get_de_dataset
  33. from src.config import reid_1p_cfg, reid_8p_cfg
  34. from src.lr_generator import step_lr
  35. from src.log import get_logger, AverageMeter
  36. from src.reid import SphereNet, CombineMarginFCFp16, BuildTrainNetworkWithHead
  37. from src.loss import CrossEntropy
  38. warnings.filterwarnings('ignore')
  39. devid = int(os.getenv('DEVICE_ID'))
  40. context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", save_graphs=True, device_id=devid)
  41. random.seed(1)
  42. np.random.seed(1)
  43. def init_argument():
  44. """init config argument."""
  45. parser = argparse.ArgumentParser(description='Cifar10 classification')
  46. parser.add_argument('--is_distributed', type=int, default=0, help='if multi device')
  47. parser.add_argument('--data_dir', type=str, default='', help='image label list file, e.g. /home/label.txt')
  48. parser.add_argument('--pretrained', type=str, default='', help='pretrained model to load')
  49. args = parser.parse_args()
  50. if args.is_distributed == 0:
  51. cfg = reid_1p_cfg
  52. else:
  53. cfg = reid_8p_cfg
  54. cfg.pretrained = args.pretrained
  55. cfg.data_dir = args.data_dir
  56. # Init distributed
  57. if args.is_distributed:
  58. init()
  59. cfg.local_rank = get_rank()
  60. cfg.world_size = get_group_size()
  61. parallel_mode = ParallelMode.DATA_PARALLEL
  62. else:
  63. parallel_mode = ParallelMode.STAND_ALONE
  64. # parallel_mode 'STAND_ALONE' do not support parameter_broadcast and mirror_mean
  65. context.set_auto_parallel_context(parallel_mode=parallel_mode, device_num=cfg.world_size,
  66. gradients_mean=True)
  67. mindspore.common.set_seed(1)
  68. # logger
  69. cfg.outputs_dir = os.path.join(cfg.ckpt_path, datetime.datetime.now().strftime('%Y-%m-%d_time_%H_%M_%S'))
  70. cfg.logger = get_logger(cfg.outputs_dir, cfg.local_rank)
  71. # Show cfg
  72. cfg.logger.save_args(cfg)
  73. return cfg
  74. def main():
  75. cfg = init_argument()
  76. loss_meter = AverageMeter('loss')
  77. # dataloader
  78. cfg.logger.info('start create dataloader')
  79. de_dataset, steps_per_epoch, class_num = get_de_dataset(cfg)
  80. cfg.steps_per_epoch = steps_per_epoch
  81. cfg.logger.info('step per epoch: %d' % cfg.steps_per_epoch)
  82. de_dataloader = de_dataset.create_tuple_iterator()
  83. cfg.logger.info('class num original: %d' % class_num)
  84. if class_num % 16 != 0:
  85. class_num = (class_num // 16 + 1) * 16
  86. cfg.class_num = class_num
  87. cfg.logger.info('change the class num to: %d' % cfg.class_num)
  88. cfg.logger.info('end create dataloader')
  89. # backbone and loss
  90. cfg.logger.important_info('start create network')
  91. create_network_start = time.time()
  92. network = SphereNet(num_layers=cfg.net_depth, feature_dim=cfg.embedding_size, shape=cfg.input_size)
  93. head = CombineMarginFCFp16(embbeding_size=cfg.embedding_size, classnum=cfg.class_num)
  94. criterion = CrossEntropy()
  95. # load the pretrained model
  96. if os.path.isfile(cfg.pretrained):
  97. param_dict = load_checkpoint(cfg.pretrained)
  98. param_dict_new = {}
  99. for key, values in param_dict.items():
  100. if key.startswith('moments.'):
  101. continue
  102. elif key.startswith('network.'):
  103. param_dict_new[key[8:]] = values
  104. else:
  105. param_dict_new[key] = values
  106. load_param_into_net(network, param_dict_new)
  107. cfg.logger.info('load model %s success' % cfg.pretrained)
  108. # mixed precision training
  109. network.add_flags_recursive(fp16=True)
  110. head.add_flags_recursive(fp16=True)
  111. criterion.add_flags_recursive(fp32=True)
  112. train_net = BuildTrainNetworkWithHead(network, head, criterion)
  113. # optimizer and lr scheduler
  114. lr = step_lr(lr=cfg.lr, epoch_size=cfg.epoch_size, steps_per_epoch=cfg.steps_per_epoch, max_epoch=cfg.max_epoch,
  115. gamma=cfg.lr_gamma)
  116. opt = SGD(params=train_net.trainable_params(), learning_rate=lr, momentum=cfg.momentum,
  117. weight_decay=cfg.weight_decay, loss_scale=cfg.loss_scale)
  118. # package training process, adjust lr + forward + backward + optimizer
  119. train_net = TrainOneStepCell(train_net, opt, sens=cfg.loss_scale)
  120. # checkpoint save
  121. if cfg.local_rank == 0:
  122. ckpt_max_num = cfg.max_epoch * cfg.steps_per_epoch // cfg.ckpt_interval
  123. train_config = CheckpointConfig(save_checkpoint_steps=cfg.ckpt_interval, keep_checkpoint_max=ckpt_max_num)
  124. ckpt_cb = ModelCheckpoint(config=train_config, directory=cfg.outputs_dir, prefix='{}'.format(cfg.local_rank))
  125. cb_params = _InternalCallbackParam()
  126. cb_params.train_network = train_net
  127. cb_params.epoch_num = ckpt_max_num
  128. cb_params.cur_epoch_num = 1
  129. run_context = RunContext(cb_params)
  130. ckpt_cb.begin(run_context)
  131. train_net.set_train()
  132. t_end = time.time()
  133. t_epoch = time.time()
  134. old_progress = -1
  135. cfg.logger.important_info('====start train====')
  136. for i, total_data in enumerate(de_dataloader):
  137. data, gt = total_data
  138. data = Tensor(data)
  139. gt = Tensor(gt)
  140. loss = train_net(data, gt)
  141. loss_meter.update(loss.asnumpy())
  142. # ckpt
  143. if cfg.local_rank == 0:
  144. cb_params.cur_step_num = i + 1 # current step number
  145. cb_params.batch_num = i + 2
  146. ckpt_cb.step_end(run_context)
  147. # logging loss, fps, ...
  148. if i == 0:
  149. time_for_graph_compile = time.time() - create_network_start
  150. cfg.logger.important_info('{}, graph compile time={:.2f}s'.format(cfg.task, time_for_graph_compile))
  151. if i % cfg.log_interval == 0 and cfg.local_rank == 0:
  152. time_used = time.time() - t_end
  153. epoch = int(i / cfg.steps_per_epoch)
  154. fps = cfg.per_batch_size * (i - old_progress) * cfg.world_size / time_used
  155. cfg.logger.info('epoch[{}], iter[{}], {}, {:.2f} imgs/sec, lr={}'.format(epoch, i, loss_meter, fps, lr[i]))
  156. t_end = time.time()
  157. loss_meter.reset()
  158. old_progress = i
  159. if i % cfg.steps_per_epoch == 0 and cfg.local_rank == 0:
  160. epoch_time_used = time.time() - t_epoch
  161. epoch = int(i / cfg.steps_per_epoch)
  162. fps = cfg.per_batch_size * cfg.world_size * cfg.steps_per_epoch / epoch_time_used
  163. cfg.logger.info('=================================================')
  164. cfg.logger.info('epoch time: epoch[{}], iter[{}], {:.2f} imgs/sec'.format(epoch, i, fps))
  165. cfg.logger.info('=================================================')
  166. t_epoch = time.time()
  167. cfg.logger.important_info('====train end====')
  168. if __name__ == "__main__":
  169. main()