You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

test_matmul_op.py 1.9 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354
  1. # Copyright 2021 Huawei Technologies Co., Ltd
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. # ============================================================================
  15. import numpy as np
  16. import pytest
  17. import mindspore.context as context
  18. import mindspore.nn as nn
  19. from mindspore import Tensor
  20. from mindspore.ops import operations as P
  21. from mindspore.ops.operations import _inner_ops as inner
  22. class MatMul_d(nn.Cell):
  23. def __init__(self):
  24. super(MatMul_d, self).__init__()
  25. self.test_dynamic = inner.GpuConvertToDynamicShape()
  26. self.matmul = P.MatMul()
  27. def construct(self, x, y):
  28. x = self.test_dynamic(x)
  29. y = self.test_dynamic(y)
  30. return self.matmul(x, y)
  31. @pytest.mark.level0
  32. @pytest.mark.platform_x86_gpu_training
  33. @pytest.mark.env_onecard
  34. def test_MatMul_dynamic():
  35. context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
  36. net = MatMul_d()
  37. x1 = np.arange(2).reshape(1, 2).astype(np.float32)
  38. y1 = np.arange(4).reshape(2, 2).astype(np.float32)
  39. output1 = net(Tensor(x1), Tensor(y1))
  40. expect1 = np.matmul(x1, y1)
  41. np.testing.assert_array_almost_equal(output1.asnumpy(), expect1)
  42. x2 = np.arange(102).reshape(34, 3).astype(np.float32)
  43. y2 = np.arange(18).reshape(3, 6).astype(np.float32)
  44. output2 = net(Tensor(x2), Tensor(y2))
  45. expect2 = np.matmul(x2, y2)
  46. np.testing.assert_array_almost_equal(output2.asnumpy(), expect2)