You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

test_arithmetic.py 18 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503
  1. # Copyright 2019 Huawei Technologies Co., Ltd
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. import numpy as np
  15. import mindspore as ms
  16. from mindspore import Parameter, Tensor, context
  17. import mindspore.nn as nn
  18. from mindspore.ops import operations as P
  19. from mindspore.ops import composite as C
  20. from mindspore.common.api import _executor
  21. from tests.ut.python.ops.test_math_ops import VirtualLoss
  22. class NetWithLoss(nn.Cell):
  23. def __init__(self, network):
  24. super(NetWithLoss, self).__init__()
  25. self.loss = VirtualLoss()
  26. self.network = network
  27. def construct(self, x, y, b):
  28. predict = self.network(x, y, b)
  29. return self.loss(predict)
  30. class GradWrap(nn.Cell):
  31. def __init__(self, network):
  32. super(GradWrap, self).__init__()
  33. self.network = network
  34. def construct(self, x, y, b):
  35. return C.grad_all(self.network)(x, y, b)
  36. def compile(net, x, y, b):
  37. net.set_auto_parallel()
  38. _executor.compile(net, x, y, b)
  39. def test_matmul_sub():
  40. class Net(nn.Cell):
  41. def __init__(self, strategy1, strategy2):
  42. super().__init__()
  43. self.matmul = P.MatMul().set_strategy(strategy1)
  44. self.sub = P.Sub().set_strategy(strategy2)
  45. def construct(self, x, y, b):
  46. out = self.matmul(x, y)
  47. out = self.sub(out, b)
  48. return out
  49. context.set_auto_parallel_context(device_num=8, global_rank=0)
  50. strategy1 = ((2, 2), (2, 2))
  51. strategy2 = ((4, 2), (4, 2))
  52. net = GradWrap(NetWithLoss(Net(strategy1, strategy2)))
  53. context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
  54. x = Tensor(np.ones([64, 32]), dtype=ms.float32)
  55. y = Tensor(np.ones([32, 64]), dtype=ms.float32)
  56. b = Tensor(np.ones([64, 64]), dtype=ms.float32)
  57. compile(net, x, y, b)
  58. def test_matmul_add():
  59. class Net(nn.Cell):
  60. def __init__(self, strategy1, strategy2):
  61. super().__init__()
  62. self.matmul = P.MatMul().set_strategy(strategy1)
  63. self.add = P.TensorAdd().set_strategy(strategy2)
  64. def construct(self, x, y, b):
  65. out = self.matmul(x, y)
  66. out = self.add(out, b)
  67. return out
  68. context.set_auto_parallel_context(device_num=8, global_rank=0)
  69. strategy1 = ((2, 2), (2, 2))
  70. strategy2 = ((4, 2), (4, 2))
  71. net = GradWrap(NetWithLoss(Net(strategy1, strategy2)))
  72. context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
  73. x = Tensor(np.ones([64, 32]), dtype=ms.float32)
  74. y = Tensor(np.ones([32, 64]), dtype=ms.float32)
  75. b = Tensor(np.ones([64, 64]), dtype=ms.float32)
  76. compile(net, x, y, b)
  77. def test_matmul_mul():
  78. class Net(nn.Cell):
  79. def __init__(self, strategy1, strategy2):
  80. super().__init__()
  81. self.matmul = P.MatMul().set_strategy(strategy1)
  82. self.mul = P.Mul().set_strategy(strategy2)
  83. def construct(self, x, y, b):
  84. out = self.matmul(x, y)
  85. out = self.mul(out, b)
  86. return out
  87. context.set_auto_parallel_context(device_num=8, global_rank=0)
  88. strategy1 = ((2, 2), (2, 2))
  89. strategy2 = ((4, 2), (4, 2))
  90. net = GradWrap(NetWithLoss(Net(strategy1, strategy2)))
  91. context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
  92. x = Tensor(np.ones([64, 32]), dtype=ms.float32)
  93. y = Tensor(np.ones([32, 64]), dtype=ms.float32)
  94. b = Tensor(np.ones([64, 64]), dtype=ms.float32)
  95. compile(net, x, y, b)
  96. def test_matmul_div():
  97. class Net(nn.Cell):
  98. def __init__(self, strategy1, strategy2):
  99. super().__init__()
  100. self.matmul = P.MatMul().set_strategy(strategy1)
  101. self.div = P.Div().set_strategy(strategy2)
  102. def construct(self, x, y, b):
  103. out = self.matmul(x, y)
  104. out = self.div(out, b)
  105. return out
  106. context.set_auto_parallel_context(device_num=8, global_rank=0)
  107. strategy1 = ((2, 2), (2, 2))
  108. strategy2 = ((4, 2), (4, 2))
  109. net = GradWrap(NetWithLoss(Net(strategy1, strategy2)))
  110. context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
  111. x = Tensor(np.ones([64, 32]), dtype=ms.float32)
  112. y = Tensor(np.ones([32, 64]), dtype=ms.float32)
  113. b = Tensor(np.ones([64, 64]), dtype=ms.float32)
  114. compile(net, x, y, b)
  115. def test_matmul_greater():
  116. class Net(nn.Cell):
  117. def __init__(self, strategy1, strategy2):
  118. super().__init__()
  119. self.matmul = P.MatMul().set_strategy(strategy1)
  120. self.greater = P.Greater().set_strategy(strategy2)
  121. def construct(self, x, y, b):
  122. out = self.matmul(x, y)
  123. out = self.greater(out, b)
  124. return out
  125. context.set_auto_parallel_context(device_num=8, global_rank=0)
  126. strategy1 = ((2, 2), (2, 2))
  127. strategy2 = ((4, 2), (4, 2))
  128. net = GradWrap(NetWithLoss(Net(strategy1, strategy2)))
  129. context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
  130. x = Tensor(np.ones([64, 32]), dtype=ms.float32)
  131. y = Tensor(np.ones([32, 64]), dtype=ms.float32)
  132. b = Tensor(np.ones([64, 64]), dtype=ms.float32)
  133. compile(net, x, y, b)
  134. def test_matmul_add_broadcast():
  135. class Net(nn.Cell):
  136. def __init__(self, strategy1, strategy2):
  137. super().__init__()
  138. self.matmul = P.MatMul().set_strategy(strategy1)
  139. self.add = P.TensorAdd().set_strategy(strategy2)
  140. def construct(self, x, y, b):
  141. out = self.matmul(x, y)
  142. out = self.add(out, b)
  143. return out
  144. context.set_auto_parallel_context(device_num=8, global_rank=0)
  145. strategy1 = ((2, 2), (2, 2))
  146. strategy2 = ((4, 2), (2, ))
  147. net = GradWrap(NetWithLoss(Net(strategy1, strategy2)))
  148. context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
  149. x = Tensor(np.ones([64, 32]), dtype=ms.float32)
  150. y = Tensor(np.ones([32, 64]), dtype=ms.float32)
  151. b = Tensor(np.ones([64]), dtype=ms.float32)
  152. compile(net, x, y, b)
  153. def test_matmul_add_broadcast2():
  154. class Net(nn.Cell):
  155. def __init__(self, strategy1, strategy2):
  156. super().__init__()
  157. self.matmul = P.MatMul().set_strategy(strategy1)
  158. self.add = P.TensorAdd().set_strategy(strategy2)
  159. def construct(self, x, y, b):
  160. out = self.matmul(x, y)
  161. out = self.add(out, b)
  162. return out
  163. context.set_auto_parallel_context(device_num=8, global_rank=0)
  164. strategy1 = ((2, 4), (4, 1))
  165. strategy2 = ((4, 1), (1, 2))
  166. net = GradWrap(NetWithLoss(Net(strategy1, strategy2)))
  167. context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
  168. x = Tensor(np.ones([64, 32]), dtype=ms.float32)
  169. y = Tensor(np.ones([32, 1]), dtype=ms.float32)
  170. b = Tensor(np.ones([1, 64]), dtype=ms.float32)
  171. compile(net, x, y, b)
  172. def test_matmul_sub_broadcast():
  173. class Net(nn.Cell):
  174. def __init__(self, strategy1, strategy2):
  175. super().__init__()
  176. self.matmul = P.MatMul().set_strategy(strategy1)
  177. self.sub = P.Sub().set_strategy(strategy2)
  178. def construct(self, x, y, b):
  179. out = self.matmul(x, y)
  180. out = self.sub(out, b)
  181. return out
  182. context.set_auto_parallel_context(device_num=8, global_rank=0)
  183. strategy1 = ((2, 2), (2, 2))
  184. strategy2 = ((4, 2), (2, ))
  185. net = GradWrap(NetWithLoss(Net(strategy1, strategy2)))
  186. context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
  187. x = Tensor(np.ones([64, 32]), dtype=ms.float32)
  188. y = Tensor(np.ones([32, 64]), dtype=ms.float32)
  189. b = Tensor(np.ones([64]), dtype=ms.float32)
  190. compile(net, x, y, b)
  191. def test_matmul_sub_broadcast2():
  192. class Net(nn.Cell):
  193. def __init__(self, strategy1, strategy2):
  194. super().__init__()
  195. self.matmul = P.MatMul().set_strategy(strategy1)
  196. self.sub = P.Sub().set_strategy(strategy2)
  197. def construct(self, x, y, b):
  198. out = self.matmul(x, y)
  199. out = self.sub(out, b)
  200. return out
  201. context.set_auto_parallel_context(device_num=8, global_rank=0)
  202. strategy1 = ((2, 4), (4, 1))
  203. strategy2 = ((4, 1), (1, 2))
  204. net = GradWrap(NetWithLoss(Net(strategy1, strategy2)))
  205. context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
  206. x = Tensor(np.ones([64, 32]), dtype=ms.float32)
  207. y = Tensor(np.ones([32, 1]), dtype=ms.float32)
  208. b = Tensor(np.ones([1, 64]), dtype=ms.float32)
  209. compile(net, x, y, b)
  210. def test_matmul_mul_broadcast():
  211. class Net(nn.Cell):
  212. def __init__(self, strategy1, strategy2):
  213. super().__init__()
  214. self.matmul = P.MatMul().set_strategy(strategy1)
  215. self.mul = P.Mul().set_strategy(strategy2)
  216. def construct(self, x, y, b):
  217. out = self.matmul(x, y)
  218. out = self.mul(out, b)
  219. return out
  220. context.set_auto_parallel_context(device_num=8, global_rank=0)
  221. strategy1 = ((2, 2), (2, 2))
  222. strategy2 = ((4, 2), (2, ))
  223. net = GradWrap(NetWithLoss(Net(strategy1, strategy2)))
  224. context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
  225. x = Tensor(np.ones([64, 32]), dtype=ms.float32)
  226. y = Tensor(np.ones([32, 64]), dtype=ms.float32)
  227. b = Tensor(np.ones([64]), dtype=ms.float32)
  228. compile(net, x, y, b)
  229. def test_matmul_mul_broadcast2():
  230. class Net(nn.Cell):
  231. def __init__(self, strategy1, strategy2):
  232. super().__init__()
  233. self.matmul = P.MatMul().set_strategy(strategy1)
  234. self.mul = P.Mul().set_strategy(strategy2)
  235. def construct(self, x, y, b):
  236. out = self.matmul(x, y)
  237. out = self.mul(out, b)
  238. return out
  239. context.set_auto_parallel_context(device_num=8, global_rank=0)
  240. strategy1 = ((2, 4), (4, 1))
  241. strategy2 = ((4, 1), (1, 2))
  242. net = GradWrap(NetWithLoss(Net(strategy1, strategy2)))
  243. context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
  244. x = Tensor(np.ones([64, 32]), dtype=ms.float32)
  245. y = Tensor(np.ones([32, 1]), dtype=ms.float32)
  246. b = Tensor(np.ones([1, 64]), dtype=ms.float32)
  247. compile(net, x, y, b)
  248. def test_matmul_div_broadcast():
  249. class Net(nn.Cell):
  250. def __init__(self, strategy1, strategy2):
  251. super().__init__()
  252. self.matmul = P.MatMul().set_strategy(strategy1)
  253. self.div = P.Div().set_strategy(strategy2)
  254. def construct(self, x, y, b):
  255. out = self.matmul(x, y)
  256. out = self.div(out, b)
  257. return out
  258. context.set_auto_parallel_context(device_num=8, global_rank=0)
  259. strategy1 = ((2, 2), (2, 2))
  260. strategy2 = ((4, 2), (2, ))
  261. net = GradWrap(NetWithLoss(Net(strategy1, strategy2)))
  262. context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
  263. x = Tensor(np.ones([64, 32]), dtype=ms.float32)
  264. y = Tensor(np.ones([32, 64]), dtype=ms.float32)
  265. b = Tensor(np.ones([64]), dtype=ms.float32)
  266. compile(net, x, y, b)
  267. def test_matmul_div_broadcast2():
  268. class Net(nn.Cell):
  269. def __init__(self, strategy1, strategy2):
  270. super().__init__()
  271. self.matmul = P.MatMul().set_strategy(strategy1)
  272. self.div = P.Div().set_strategy(strategy2)
  273. def construct(self, x, y, b):
  274. out = self.matmul(x, y)
  275. out = self.div(out, b)
  276. return out
  277. context.set_auto_parallel_context(device_num=8, global_rank=0)
  278. strategy1 = ((2, 4), (4, 1))
  279. strategy2 = ((4, 1), (1, 2))
  280. net = GradWrap(NetWithLoss(Net(strategy1, strategy2)))
  281. context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
  282. x = Tensor(np.ones([64, 32]), dtype=ms.float32)
  283. y = Tensor(np.ones([32, 1]), dtype=ms.float32)
  284. b = Tensor(np.ones([1, 64]), dtype=ms.float32)
  285. compile(net, x, y, b)
  286. def test_matmul_greater_broadcast():
  287. class Net(nn.Cell):
  288. def __init__(self, strategy1, strategy2):
  289. super().__init__()
  290. self.matmul = P.MatMul().set_strategy(strategy1)
  291. self.greater = P.Greater().set_strategy(strategy2)
  292. def construct(self, x, y, b):
  293. out = self.matmul(x, y)
  294. out = self.greater(out, b)
  295. return out
  296. context.set_auto_parallel_context(device_num=8, global_rank=0)
  297. strategy1 = ((2, 2), (2, 2))
  298. strategy2 = ((4, 2), (2, ))
  299. net = GradWrap(NetWithLoss(Net(strategy1, strategy2)))
  300. context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
  301. x = Tensor(np.ones([64, 32]), dtype=ms.float32)
  302. y = Tensor(np.ones([32, 64]), dtype=ms.float32)
  303. b = Tensor(np.ones([64]), dtype=ms.float32)
  304. compile(net, x, y, b)
  305. def test_matmul_greater_broadcast2():
  306. class Net(nn.Cell):
  307. def __init__(self, strategy1, strategy2):
  308. super().__init__()
  309. self.matmul = P.MatMul().set_strategy(strategy1)
  310. self.greater = P.Greater().set_strategy(strategy2)
  311. def construct(self, x, y, b):
  312. out = self.matmul(x, y)
  313. out = self.greater(out, b)
  314. return out
  315. context.set_auto_parallel_context(device_num=8, global_rank=0)
  316. strategy1 = ((2, 4), (4, 1))
  317. strategy2 = ((4, 1), (1, 2))
  318. net = GradWrap(NetWithLoss(Net(strategy1, strategy2)))
  319. context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
  320. x = Tensor(np.ones([64, 32]), dtype=ms.float32)
  321. y = Tensor(np.ones([32, 1]), dtype=ms.float32)
  322. b = Tensor(np.ones([1, 64]), dtype=ms.float32)
  323. compile(net, x, y, b)
  324. def test_matmul_floordiv():
  325. class Net(nn.Cell):
  326. def __init__(self, strategy1, strategy2):
  327. super().__init__()
  328. self.matmul = P.MatMul().set_strategy(strategy1)
  329. self.floordiv = P.FloorDiv().set_strategy(strategy2)
  330. def construct(self, x, y, b):
  331. out = self.matmul(x, y)
  332. out = self.floordiv(out, b)
  333. return out
  334. context.set_auto_parallel_context(device_num=8, global_rank=0)
  335. strategy1 = ((2, 2), (2, 2))
  336. strategy2 = ((4, 2), (4, 2))
  337. net = GradWrap(NetWithLoss(Net(strategy1, strategy2)))
  338. context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
  339. x = Tensor(np.ones([64, 32]), dtype=ms.float32)
  340. y = Tensor(np.ones([32, 64]), dtype=ms.float32)
  341. b = Tensor(np.ones([64, 64]), dtype=ms.float32)
  342. compile(net, x, y, b)
  343. def test_matmul_floordiv_broadcast():
  344. class Net(nn.Cell):
  345. def __init__(self, strategy1, strategy2):
  346. super().__init__()
  347. self.matmul = P.MatMul().set_strategy(strategy1)
  348. self.floordiv = P.FloorDiv().set_strategy(strategy2)
  349. def construct(self, x, y, b):
  350. out = self.matmul(x, y)
  351. out = self.floordiv(out, b)
  352. return out
  353. context.set_auto_parallel_context(device_num=8, global_rank=0)
  354. strategy1 = ((2, 2), (2, 2))
  355. strategy2 = ((4, 2), (2, ))
  356. net = GradWrap(NetWithLoss(Net(strategy1, strategy2)))
  357. context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
  358. x = Tensor(np.ones([64, 32]), dtype=ms.float32)
  359. y = Tensor(np.ones([32, 64]), dtype=ms.float32)
  360. b = Tensor(np.ones([64]), dtype=ms.float32)
  361. compile(net, x, y, b)
  362. def test_matmul_floordiv_broadcast2():
  363. class Net(nn.Cell):
  364. def __init__(self, strategy1, strategy2):
  365. super().__init__()
  366. self.matmul = P.MatMul().set_strategy(strategy1)
  367. self.floordiv = P.FloorDiv().set_strategy(strategy2)
  368. def construct(self, x, y, b):
  369. out = self.matmul(x, y)
  370. out = self.floordiv(out, b)
  371. return out
  372. context.set_auto_parallel_context(device_num=8, global_rank=0)
  373. strategy1 = ((2, 4), (4, 1))
  374. strategy2 = ((4, 1), (1, 2))
  375. net = GradWrap(NetWithLoss(Net(strategy1, strategy2)))
  376. context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
  377. x = Tensor(np.ones([64, 32]), dtype=ms.float32)
  378. y = Tensor(np.ones([32, 1]), dtype=ms.float32)
  379. b = Tensor(np.ones([1, 64]), dtype=ms.float32)
  380. compile(net, x, y, b)
  381. def test_assign_sub():
  382. class Net(nn.Cell):
  383. def __init__(self):
  384. super().__init__()
  385. self.assign_sub = P.AssignSub()
  386. self.mul = P.Mul()
  387. self.mul_weight = Parameter(Tensor(np.full([128, 32],
  388. 0.5, dtype=np.float32)),
  389. name="mul_weight")
  390. self.assignsub_weight = Parameter(Tensor(np.full([128, 32],
  391. 1.1, dtype=np.float32)),
  392. name="assignsub_weight")
  393. def construct(self, x, y, z):
  394. out = self.mul(x, self.mul_weight)
  395. out = self.assign_sub(self.assignsub_weight, out)
  396. return out
  397. context.set_auto_parallel_context(device_num=64, global_rank=15)
  398. context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
  399. net = GradWrap(NetWithLoss(Net()))
  400. x = Tensor(np.ones([128, 32]), dtype=ms.float32)
  401. y = Tensor(np.ones([128, 32]), dtype=ms.float32)
  402. z = Tensor(np.ones([128, 32]), dtype=ms.float32)
  403. compile(net, x, y, z)