You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

train.py 15 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350
  1. # Copyright 2020 Huawei Technologies Co., Ltd
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. # ============================================================================
  15. """YoloV3 train."""
  16. import os
  17. import time
  18. import argparse
  19. import datetime
  20. from mindspore import ParallelMode
  21. from mindspore.nn.optim.momentum import Momentum
  22. from mindspore import Tensor
  23. import mindspore.nn as nn
  24. from mindspore import context
  25. from mindspore.communication.management import init, get_rank, get_group_size
  26. from mindspore.train.callback import ModelCheckpoint, RunContext
  27. from mindspore.train.callback import _InternalCallbackParam, CheckpointConfig
  28. import mindspore as ms
  29. from mindspore.train.serialization import load_checkpoint, load_param_into_net
  30. from mindspore import amp
  31. from mindspore.train.loss_scale_manager import FixedLossScaleManager
  32. from src.yolo import YOLOV3DarkNet53, YoloWithLossCell, TrainingWrapper
  33. from src.logger import get_logger
  34. from src.util import AverageMeter, load_backbone, get_param_groups
  35. from src.lr_scheduler import warmup_step_lr, warmup_cosine_annealing_lr, \
  36. warmup_cosine_annealing_lr_V2, warmup_cosine_annealing_lr_sample
  37. from src.yolo_dataset import create_yolo_dataset
  38. from src.initializer import default_recurisive_init
  39. from src.config import ConfigYOLOV3DarkNet53
  40. from src.util import keep_loss_fp32
  41. class BuildTrainNetwork(nn.Cell):
  42. def __init__(self, network, criterion):
  43. super(BuildTrainNetwork, self).__init__()
  44. self.network = network
  45. self.criterion = criterion
  46. def construct(self, input_data, label):
  47. output = self.network(input_data)
  48. loss = self.criterion(output, label)
  49. return loss
  50. def parse_args():
  51. """Parse train arguments."""
  52. parser = argparse.ArgumentParser('mindspore coco training')
  53. # device related
  54. parser.add_argument('--device_target', type=str, default='Ascend', choices=['Ascend', 'GPU'],
  55. help='device where the code will be implemented. (Default: Ascend)')
  56. # dataset related
  57. parser.add_argument('--data_dir', type=str, help='Train dataset directory.')
  58. parser.add_argument('--per_batch_size', default=32, type=int, help='Batch size for Training. Default: 32.')
  59. # network related
  60. parser.add_argument('--pretrained_backbone', default='', type=str,
  61. help='The ckpt file of DarkNet53. Default: "".')
  62. parser.add_argument('--resume_yolov3', default='', type=str,
  63. help='The ckpt file of YOLOv3, which used to fine tune. Default: ""')
  64. # optimizer and lr related
  65. parser.add_argument('--lr_scheduler', default='exponential', type=str,
  66. help='Learning rate scheduler, options: exponential, cosine_annealing. Default: exponential')
  67. parser.add_argument('--lr', default=0.001, type=float, help='Learning rate. Default: 0.001')
  68. parser.add_argument('--lr_epochs', type=str, default='220,250',
  69. help='Epoch of changing of lr changing, split with ",". Default: 220,250')
  70. parser.add_argument('--lr_gamma', type=float, default=0.1,
  71. help='Decrease lr by a factor of exponential lr_scheduler. Default: 0.1')
  72. parser.add_argument('--eta_min', type=float, default=0., help='Eta_min in cosine_annealing scheduler. Default: 0')
  73. parser.add_argument('--T_max', type=int, default=320, help='T-max in cosine_annealing scheduler. Default: 320')
  74. parser.add_argument('--max_epoch', type=int, default=320, help='Max epoch num to train the model. Default: 320')
  75. parser.add_argument('--warmup_epochs', default=0, type=float, help='Warmup epochs. Default: 0')
  76. parser.add_argument('--weight_decay', type=float, default=0.0005, help='Weight decay factor. Default: 0.0005')
  77. parser.add_argument('--momentum', type=float, default=0.9, help='Momentum. Default: 0.9')
  78. # loss related
  79. parser.add_argument('--loss_scale', type=int, default=1024, help='Static loss scale. Default: 1024')
  80. parser.add_argument('--label_smooth', type=int, default=0, help='Whether to use label smooth in CE. Default:0')
  81. parser.add_argument('--label_smooth_factor', type=float, default=0.1,
  82. help='Smooth strength of original one-hot. Default: 0.1')
  83. # logging related
  84. parser.add_argument('--log_interval', type=int, default=100, help='Logging interval steps. Default: 100')
  85. parser.add_argument('--ckpt_path', type=str, default='outputs/', help='Checkpoint save location. Default: outputs/')
  86. parser.add_argument('--ckpt_interval', type=int, default=None, help='Save checkpoint interval. Default: None')
  87. parser.add_argument('--is_save_on_master', type=int, default=1,
  88. help='Save ckpt on master or all rank, 1 for master, 0 for all ranks. Default: 1')
  89. # distributed related
  90. parser.add_argument('--is_distributed', type=int, default=1,
  91. help='Distribute train or not, 1 for yes, 0 for no. Default: 1')
  92. parser.add_argument('--rank', type=int, default=0, help='Local rank of distributed. Default: 0')
  93. parser.add_argument('--group_size', type=int, default=1, help='World size of device. Default: 1')
  94. # profiler init
  95. parser.add_argument('--need_profiler', type=int, default=0,
  96. help='Whether use profiler. 0 for no, 1 for yes. Default: 0')
  97. # reset default config
  98. parser.add_argument('--training_shape', type=str, default="", help='Fix training shape. Default: ""')
  99. parser.add_argument('--resize_rate', type=int, default=None,
  100. help='Resize rate for multi-scale training. Default: None')
  101. args, _ = parser.parse_known_args()
  102. if args.lr_scheduler == 'cosine_annealing' and args.max_epoch > args.T_max:
  103. args.T_max = args.max_epoch
  104. args.lr_epochs = list(map(int, args.lr_epochs.split(',')))
  105. args.data_root = os.path.join(args.data_dir, 'train2014')
  106. args.annFile = os.path.join(args.data_dir, 'annotations/instances_train2014.json')
  107. return args
  108. def conver_training_shape(args):
  109. training_shape = [int(args.training_shape), int(args.training_shape)]
  110. return training_shape
  111. def train():
  112. """Train function."""
  113. args = parse_args()
  114. devid = int(os.getenv('DEVICE_ID')) if os.getenv('DEVICE_ID') else 0
  115. context.set_context(mode=context.GRAPH_MODE, enable_auto_mixed_precision=True,
  116. device_target=args.device_target, save_graphs=True, device_id=devid)
  117. # init distributed
  118. if args.is_distributed:
  119. if args.device_target == "Ascend":
  120. init()
  121. else:
  122. init("nccl")
  123. args.rank = get_rank()
  124. args.group_size = get_group_size()
  125. # select for master rank save ckpt or all rank save, compatiable for model parallel
  126. args.rank_save_ckpt_flag = 0
  127. if args.is_save_on_master:
  128. if args.rank == 0:
  129. args.rank_save_ckpt_flag = 1
  130. else:
  131. args.rank_save_ckpt_flag = 1
  132. # logger
  133. args.outputs_dir = os.path.join(args.ckpt_path,
  134. datetime.datetime.now().strftime('%Y-%m-%d_time_%H_%M_%S'))
  135. args.logger = get_logger(args.outputs_dir, args.rank)
  136. args.logger.save_args(args)
  137. if args.need_profiler:
  138. from mindspore.profiler.profiling import Profiler
  139. profiler = Profiler(output_path=args.outputs_dir, is_detail=True, is_show_op_path=True)
  140. loss_meter = AverageMeter('loss')
  141. context.reset_auto_parallel_context()
  142. if args.is_distributed:
  143. parallel_mode = ParallelMode.DATA_PARALLEL
  144. degree = get_group_size()
  145. else:
  146. parallel_mode = ParallelMode.STAND_ALONE
  147. degree = 1
  148. context.set_auto_parallel_context(parallel_mode=parallel_mode, mirror_mean=True, device_num=degree)
  149. network = YOLOV3DarkNet53(is_training=True)
  150. # default is kaiming-normal
  151. default_recurisive_init(network)
  152. if args.pretrained_backbone:
  153. network = load_backbone(network, args.pretrained_backbone, args)
  154. args.logger.info('load pre-trained backbone {} into network'.format(args.pretrained_backbone))
  155. else:
  156. args.logger.info('Not load pre-trained backbone, please be careful')
  157. if args.resume_yolov3:
  158. param_dict = load_checkpoint(args.resume_yolov3)
  159. param_dict_new = {}
  160. for key, values in param_dict.items():
  161. if key.startswith('moments.'):
  162. continue
  163. elif key.startswith('yolo_network.'):
  164. param_dict_new[key[13:]] = values
  165. args.logger.info('in resume {}'.format(key))
  166. else:
  167. param_dict_new[key] = values
  168. args.logger.info('in resume {}'.format(key))
  169. args.logger.info('resume finished')
  170. load_param_into_net(network, param_dict_new)
  171. args.logger.info('load_model {} success'.format(args.resume_yolov3))
  172. network = YoloWithLossCell(network)
  173. args.logger.info('finish get network')
  174. config = ConfigYOLOV3DarkNet53()
  175. config.label_smooth = args.label_smooth
  176. config.label_smooth_factor = args.label_smooth_factor
  177. if args.training_shape:
  178. config.multi_scale = [conver_training_shape(args)]
  179. if args.resize_rate:
  180. config.resize_rate = args.resize_rate
  181. ds, data_size = create_yolo_dataset(image_dir=args.data_root, anno_path=args.annFile, is_training=True,
  182. batch_size=args.per_batch_size, max_epoch=args.max_epoch,
  183. device_num=args.group_size, rank=args.rank, config=config)
  184. args.logger.info('Finish loading dataset')
  185. args.steps_per_epoch = int(data_size / args.per_batch_size / args.group_size)
  186. if not args.ckpt_interval:
  187. args.ckpt_interval = args.steps_per_epoch
  188. # lr scheduler
  189. if args.lr_scheduler == 'exponential':
  190. lr = warmup_step_lr(args.lr,
  191. args.lr_epochs,
  192. args.steps_per_epoch,
  193. args.warmup_epochs,
  194. args.max_epoch,
  195. gamma=args.lr_gamma,
  196. )
  197. elif args.lr_scheduler == 'cosine_annealing':
  198. lr = warmup_cosine_annealing_lr(args.lr,
  199. args.steps_per_epoch,
  200. args.warmup_epochs,
  201. args.max_epoch,
  202. args.T_max,
  203. args.eta_min)
  204. elif args.lr_scheduler == 'cosine_annealing_V2':
  205. lr = warmup_cosine_annealing_lr_V2(args.lr,
  206. args.steps_per_epoch,
  207. args.warmup_epochs,
  208. args.max_epoch,
  209. args.T_max,
  210. args.eta_min)
  211. elif args.lr_scheduler == 'cosine_annealing_sample':
  212. lr = warmup_cosine_annealing_lr_sample(args.lr,
  213. args.steps_per_epoch,
  214. args.warmup_epochs,
  215. args.max_epoch,
  216. args.T_max,
  217. args.eta_min)
  218. else:
  219. raise NotImplementedError(args.lr_scheduler)
  220. opt = Momentum(params=get_param_groups(network),
  221. learning_rate=Tensor(lr),
  222. momentum=args.momentum,
  223. weight_decay=args.weight_decay,
  224. loss_scale=args.loss_scale)
  225. enable_amp = False
  226. is_gpu = context.get_context("device_target") == "GPU"
  227. if is_gpu:
  228. enable_amp = True
  229. if enable_amp:
  230. loss_scale_value = 1.0
  231. loss_scale = FixedLossScaleManager(loss_scale_value, drop_overflow_update=False)
  232. network = amp.build_train_network(network, optimizer=opt, loss_scale_manager=loss_scale,
  233. level="O2", keep_batchnorm_fp32=True)
  234. keep_loss_fp32(network)
  235. else:
  236. network = TrainingWrapper(network, opt)
  237. network.set_train()
  238. if args.rank_save_ckpt_flag:
  239. # checkpoint save
  240. ckpt_max_num = args.max_epoch * args.steps_per_epoch // args.ckpt_interval
  241. ckpt_config = CheckpointConfig(save_checkpoint_steps=args.ckpt_interval,
  242. keep_checkpoint_max=ckpt_max_num)
  243. ckpt_cb = ModelCheckpoint(config=ckpt_config,
  244. directory=args.outputs_dir,
  245. prefix='{}'.format(args.rank))
  246. cb_params = _InternalCallbackParam()
  247. cb_params.train_network = network
  248. cb_params.epoch_num = ckpt_max_num
  249. cb_params.cur_epoch_num = 1
  250. run_context = RunContext(cb_params)
  251. ckpt_cb.begin(run_context)
  252. old_progress = -1
  253. t_end = time.time()
  254. data_loader = ds.create_dict_iterator()
  255. for i, data in enumerate(data_loader):
  256. images = data["image"]
  257. input_shape = images.shape[2:4]
  258. args.logger.info('iter[{}], shape{}'.format(i, input_shape[0]))
  259. images = Tensor(images)
  260. batch_y_true_0 = Tensor(data['bbox1'])
  261. batch_y_true_1 = Tensor(data['bbox2'])
  262. batch_y_true_2 = Tensor(data['bbox3'])
  263. batch_gt_box0 = Tensor(data['gt_box1'])
  264. batch_gt_box1 = Tensor(data['gt_box2'])
  265. batch_gt_box2 = Tensor(data['gt_box3'])
  266. input_shape = Tensor(tuple(input_shape[::-1]), ms.float32)
  267. loss = network(images, batch_y_true_0, batch_y_true_1, batch_y_true_2, batch_gt_box0, batch_gt_box1,
  268. batch_gt_box2, input_shape)
  269. loss_meter.update(loss.asnumpy())
  270. if args.rank_save_ckpt_flag:
  271. # ckpt progress
  272. cb_params.cur_step_num = i + 1 # current step number
  273. cb_params.batch_num = i + 2
  274. ckpt_cb.step_end(run_context)
  275. if i % args.log_interval == 0:
  276. time_used = time.time() - t_end
  277. epoch = int(i / args.steps_per_epoch)
  278. fps = args.per_batch_size * (i - old_progress) * args.group_size / time_used
  279. if args.rank == 0:
  280. args.logger.info(
  281. 'epoch[{}], iter[{}], {}, {:.2f} imgs/sec, lr:{}'.format(epoch, i, loss_meter, fps, lr[i]))
  282. t_end = time.time()
  283. loss_meter.reset()
  284. old_progress = i
  285. if (i + 1) % args.steps_per_epoch == 0 and args.rank_save_ckpt_flag:
  286. cb_params.cur_epoch_num += 1
  287. if args.need_profiler:
  288. if i == 10:
  289. profiler.analyse()
  290. break
  291. args.logger.info('==========end training===============')
  292. if __name__ == "__main__":
  293. train()