|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102 |
- # Copyright 2021 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
- """Dice"""
- import numpy as np
- from mindspore._checkparam import Validator as validator
- from .metric import Metric
-
-
- class Dice(Metric):
- r"""
- The Dice coefficient is a set similarity metric. It is used to calculate the similarity between two samples. The
- value of the Dice coefficient is 1 when the segmentation result is the best and 0 when the segmentation result
- is the worst. The Dice coefficient indicates the ratio of the area between two objects to the total area.
- The function is shown as follows:
-
- .. math::
- dice = \frac{2 * (pred \bigcap true)}{pred \bigcup true}
-
- Args:
- smooth (float): A term added to the denominator to improve numerical stability. Should be greater than 0.
- Default: 1e-5.
- threshold (float): A threshold, which is used to compare with the input tensor. Default: 0.5.
-
- Examples:
- >>> x = Tensor(np.array([[0.2, 0.5], [0.3, 0.1], [0.9, 0.6]]))
- >>> y = Tensor(np.array([[0, 1], [1, 0], [0, 1]]))
- >>> metric = Dice(smooth=1e-5, threshold=0.5)
- >>> metric.clear()
- >>> metric.update(x, y)
- >>> dice = metric.eval()
- 0.22222926
- """
-
- def __init__(self, smooth=1e-5, threshold=0.5):
- super(Dice, self).__init__()
-
- self.smooth = validator.check_positive_float(smooth, "smooth")
- self.threshold = validator.check_value_type("threshold", threshold, [float])
- self.clear()
-
- def clear(self):
- """Clears the internal evaluation result."""
- self._dim = 0
- self.intersection = 0
- self.unionset = 0
-
- def update(self, *inputs):
- """
- Updates the internal evaluation result :math:`y_pred` and :math:`y`.
-
- Args:
- inputs: Input `y_pred` and `y`. `y_pred` and `y` are Tensor, list or numpy.ndarray. `y_pred` is the
- predicted value, `y` is the true value. The shape of `y_pred` and `y` are both :math:`(N, C)`.
-
- Raises:
- ValueError: If the number of the inputs is not 2.
- """
- if len(inputs) != 2:
- raise ValueError('Dice need 2 inputs (y_pred, y), but got {}'.format(len(inputs)))
-
- y_pred = self._convert_data(inputs[0])
- y = self._convert_data(inputs[1])
-
- if y_pred.shape != y.shape:
- raise RuntimeError('y_pred and y should have same the dimension, but the shape of y_pred is{}, '
- 'the shape of y is {}.'.format(y_pred.shape, y.shape))
-
- y_pred = (y_pred > self.threshold).astype(int)
- self._dim = y.shape
- pred_flat = np.reshape(y_pred, (self._dim[0], -1))
- true_flat = np.reshape(y, (self._dim[0], -1))
- self.intersection = np.sum((pred_flat * true_flat), axis=1)
- self.unionset = np.sum(pred_flat, axis=1) + np.sum(true_flat, axis=1)
-
- def eval(self):
- r"""
- Computes the Dice.
-
- Returns:
- Float, the computed result.
-
- Raises:
- RuntimeError: If the sample size is 0.
- """
- if self._dim[0] == 0:
- raise RuntimeError('Dice can not be calculated, because the number of samples is 0.')
-
- dice = (2 * self.intersection + self.smooth) / (self.unionset + self.smooth)
-
- return np.sum(dice) / self._dim[0]
|