You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

export.py 1.9 kB

1234567891011121314151617181920212223242526272829303132333435363738394041
  1. # Copyright 2020 Huawei Technologies Co., Ltd
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. # ============================================================================
  15. """
  16. ssd export mindir.
  17. """
  18. import argparse
  19. import numpy as np
  20. from mindspore import context, Tensor
  21. from mindspore.train.serialization import load_checkpoint, load_param_into_net, export
  22. from src.ssd import SSD300, ssd_mobilenet_v2
  23. from src.config import config
  24. def get_export_args():
  25. parser = argparse.ArgumentParser(description='SSD export')
  26. parser.add_argument("--checkpoint_path", type=str, required=True, help="Checkpoint file path.")
  27. parser.add_argument("--run_platform", type=str, default="Ascend", choices=("Ascend", "GPU", "CPU"),
  28. help="run platform, support Ascend, GPU and CPU.")
  29. return parser.parse_args()
  30. if __name__ == '__main__':
  31. args_opt = get_export_args()
  32. context.set_context(mode=context.GRAPH_MODE, device_target=args_opt.run_platform)
  33. net = SSD300(ssd_mobilenet_v2(), config, is_training=False)
  34. param_dict = load_checkpoint(args_opt.checkpoint_path)
  35. load_param_into_net(net, param_dict)
  36. input_shp = [1, 3] + config.img_shape
  37. input_array = Tensor(np.random.uniform(-1.0, 1.0, size=input_shp).astype(np.float32))
  38. export(net, input_array, file_name=config.export_file, file_format=config.export_format)