|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307 |
- # Copyright 2021 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
-
- import re
- import numpy as np
- import mindspore as ms
- import mindspore.nn as nn
- from mindspore import Tensor
- from mindspore import context
- from mindspore.common.api import _executor
- from mindspore.ops import operations as P
- from mindspore.common.parameter import Parameter
-
- context.set_context(mode=context.GRAPH_MODE)
-
- class DenseMutMulNet(nn.Cell):
- def __init__(self):
- super(DenseMutMulNet, self).__init__()
- self.fc1 = nn.Dense(128, 768)
- self.fc2 = nn.Dense(128, 768)
- self.fc3 = nn.Dense(128, 768)
- self.fc4 = nn.Dense(768, 768, has_bias=False)
- self.relu4 = nn.ReLU()
- self.relu5 = nn.ReLU()
- self.transpose = P.Transpose()
- self.matmul1 = P.MatMul()
- self.matmul2 = P.MatMul()
- self.fc4.matmul.shard(((1, 1), (8, 1)))
-
- def construct(self, x):
- q = self.fc1(x)
- k = self.fc2(x)
- v = self.fc3(x)
- k = self.transpose(k, (1, 0))
- c = self.relu4(self.matmul1(q, k))
- s = self.relu5(self.matmul2(c, v))
- s = self.fc4(s)
- return s
-
- class MulNegTwoOutputNet(nn.Cell):
- def __init__(self):
- super().__init__()
- self.mul = P.Mul().shard(((2, 4), (2, 4)))
- self.neg = P.Neg().shard(((2, 4),))
- self.mul_weight = Parameter(Tensor(np.ones([32, 128]), dtype=ms.float32), name="weight")
-
- def construct(self, x):
- out1 = self.mul(x, self.mul_weight)
- out2 = self.neg(out1)
- return out1, out2
-
- class ReshapeMatMulNet(nn.Cell):
- def __init__(self, strategy1, strategy2):
- super().__init__()
- self.reshape = P.Reshape()
- self.matmul = P.MatMul().shard(strategy2)
- self.matmul_weight = Parameter(Tensor(np.ones([28, 64]), dtype=ms.float32), name="weight")
- # x (64, 4, 7)
- def construct(self, x):
- out = self.reshape(x, (64, 28))
- out = self.matmul(out, self.matmul_weight)
- return out
-
- class MatMulReshapeNet(nn.Cell):
- def __init__(self, strategy1, strategy2):
- super().__init__()
- self.reshape = P.Reshape()
- self.matmul = P.MatMul().shard(strategy1)
- self.matmul_weight = Parameter(Tensor(np.ones([28, 64]), dtype=ms.float32), name="weight")
- # x (128, 28)
- def construct(self, x):
- out = self.matmul(x, self.matmul_weight)
- out = self.reshape(out, (64, -1))
- return out
-
- class ReshapeMulNet(nn.Cell):
- def __init__(self):
- super().__init__()
- self.reshape = P.Reshape()
- self.mul = P.Mul().shard(((1, 2, 4), (2, 4)))
- self.mul_weight = Parameter(Tensor(np.ones([128, 96]), dtype=ms.float32), name="weight")
-
- def construct(self, x):
- weight = self.reshape(self.mul_weight, (1, 128, 96))
- out = self.mul(weight, self.mul_weight)
- return out
-
- class ParallelMulNet(nn.Cell):
- def __init__(self, dense_in_channel=2048, dense_out_channel=250):
- super().__init__()
- weight_np = np.full((dense_out_channel, dense_in_channel), 0.01, dtype=np.float32)
- bias_np = np.full((dense_out_channel,), 0.01, dtype=np.float32)
- self.flat = nn.Flatten()
- self.dense = nn.Dense(in_channels=dense_in_channel,
- out_channels=dense_out_channel,
- weight_init=Tensor(weight_np),
- bias_init=Tensor(bias_np),
- has_bias=True)
- self.mul = P.Mul()
- def construct(self, inputs):
- x = self.flat(inputs)
- x = self.dense(x)
- x = self.mul(x, x)
- return x
-
- def compile_graph(x, net):
- net.set_auto_parallel()
- net.set_train(False)
- _executor.compile(net, x, auto_parallel_mode=True)
- strategies = _executor._get_shard_strategy(net)
- return strategies
-
- def compile_graph_two_input(x, y, net):
- net.set_auto_parallel()
- net.set_train(False)
- _executor.compile(net, x, y, auto_parallel_mode=True)
- strategies = _executor._get_shard_strategy(net)
- return strategies
-
-
- def test_dense_relu_semi_auto():
- context.set_auto_parallel_context(device_num=8, global_rank=0, parallel_mode="semi_auto_parallel", full_batch=False)
- net = DenseMutMulNet()
- x = Tensor(np.ones([32, 128]).astype(np.float32) * 0.01)
- strategies = compile_graph(x, net)
- for (k, v) in strategies.items():
- if re.search('VirtualOutput-op', k) is not None:
- assert v[0][0] == 8
-
- def test_dense_relu_semi_auto_full_batch():
- context.set_auto_parallel_context(device_num=8, global_rank=0, parallel_mode="semi_auto_parallel", full_batch=True)
- net = DenseMutMulNet()
- x = Tensor(np.ones([32, 128]).astype(np.float32) * 0.01)
- strategies = compile_graph(x, net)
- for (k, v) in strategies.items():
- if re.search('VirtualOutput-op', k) is not None:
- assert v[0][0] == 1
-
- def test_dense_relu_auto():
- context.set_auto_parallel_context(device_num=8, global_rank=0, parallel_mode="auto_parallel", full_batch=False)
- net = DenseMutMulNet()
- x = Tensor(np.ones([32, 128]).astype(np.float32) * 0.01)
- strategies = compile_graph(x, net)
- for (k, v) in strategies.items():
- if re.search('VirtualOutput-op', k) is not None:
- assert v[0][0] == 8
-
- def test_dense_relu_auto_full_batch():
- context.set_auto_parallel_context(device_num=8, global_rank=0, parallel_mode="auto_parallel", full_batch=True)
- net = DenseMutMulNet()
- x = Tensor(np.ones([32, 128]).astype(np.float32) * 0.01)
- strategies = compile_graph(x, net)
- for (k, v) in strategies.items():
- if re.search('VirtualOutput-op', k) is not None:
- assert v[0][0] == 1
-
- def test_mul_neg_two_output_semi_auto():
- context.set_auto_parallel_context(device_num=8, global_rank=0, parallel_mode="semi_auto_parallel", full_batch=False)
- net = MulNegTwoOutputNet()
- x = Tensor(np.ones([32, 128]).astype(np.float32) * 0.01)
- strategies = compile_graph(x, net)
- count = 0
- for (k, v) in strategies.items():
- if re.search('VirtualOutput-op', k) is not None:
- count += 1
- assert v[0][0] == 8
- assert count == 2
-
- def test_mul_neg_two_output_semi_auto_full_batch():
- context.set_auto_parallel_context(device_num=8, global_rank=0, parallel_mode="semi_auto_parallel", full_batch=True)
- net = MulNegTwoOutputNet()
- x = Tensor(np.ones([32, 128]).astype(np.float32) * 0.01)
- strategies = compile_graph(x, net)
- count = 0
- for (k, v) in strategies.items():
- if re.search('VirtualOutput-op', k) is not None:
- count += 1
- assert v[0][0] == 1
- assert count == 2
-
- def test_mul_neg_two_output_auto():
- context.set_auto_parallel_context(device_num=8, global_rank=0, parallel_mode="auto_parallel", full_batch=False)
- net = MulNegTwoOutputNet()
- x = Tensor(np.ones([32, 128]).astype(np.float32) * 0.01)
- strategies = compile_graph(x, net)
- count = 0
- for (k, v) in strategies.items():
- if re.search('VirtualOutput-op', k) is not None:
- count += 1
- assert v[0][0] == 8
- assert count == 2
-
- def test_mul_neg_two_output_full_batch():
- context.set_auto_parallel_context(device_num=8, global_rank=0, parallel_mode="auto_parallel", full_batch=True)
- net = MulNegTwoOutputNet()
- x = Tensor(np.ones([32, 128]).astype(np.float32) * 0.01)
- strategies = compile_graph(x, net)
- count = 0
- for (k, v) in strategies.items():
- if re.search('VirtualOutput-op', k) is not None:
- count += 1
- assert v[0][0] == 1
- assert count == 2
-
- def test_reshape_matmul_semi_auto():
- context.set_auto_parallel_context(device_num=8, global_rank=0, parallel_mode="semi_auto_parallel", full_batch=False)
- strategy1 = None
- strategy2 = ((1, 1), (1, 8))
- net = ReshapeMatMulNet(strategy1, strategy2)
- x = Tensor(np.ones([64, 4, 7]), ms.float32)
- strategies = compile_graph(x, net)
- for (k, v) in strategies.items():
- if re.search('VirtualOutput-op', k) is not None:
- assert v[0][0] == 8
-
- def test_reshape_matmul_auto():
- context.set_auto_parallel_context(device_num=8, global_rank=0, parallel_mode="auto_parallel", full_batch=False)
- strategy1 = None
- strategy2 = ((1, 1), (1, 8))
- net = ReshapeMatMulNet(strategy1, strategy2)
- x = Tensor(np.ones([64, 4, 7]), ms.float32)
- strategies = compile_graph(x, net)
- for (k, v) in strategies.items():
- if re.search('VirtualOutput-op', k) is not None:
- assert v[0][0] == 8
-
- def test_matmul_reshape_semi_auto():
- context.set_auto_parallel_context(device_num=8, global_rank=0, parallel_mode="semi_auto_parallel", full_batch=False)
- strategy2 = None
- strategy1 = ((1, 1), (1, 8))
- net = MatMulReshapeNet(strategy1, strategy2)
- x = Tensor(np.ones([128, 28]), ms.float32)
- strategies = compile_graph(x, net)
- for (k, v) in strategies.items():
- if re.search('VirtualOutput-op', k) is not None:
- assert v[0][0] == 8
-
- def test_matmul_reshape_auto():
- context.set_auto_parallel_context(device_num=8, global_rank=0, parallel_mode="auto_parallel", full_batch=False)
- strategy2 = None
- strategy1 = ((1, 1), (1, 8))
- net = MatMulReshapeNet(strategy1, strategy2)
- x = Tensor(np.ones([128, 28]), ms.float32)
- strategies = compile_graph(x, net)
- for (k, v) in strategies.items():
- if re.search('VirtualOutput-op', k) is not None:
- assert v[0][0] == 8
-
- def test_reshape_mul_semi_auto():
- context.set_auto_parallel_context(device_num=8, global_rank=0, parallel_mode="semi_auto_parallel", full_batch=True)
- net = ReshapeMulNet()
- x = Tensor(np.ones([64, 4]), ms.float32)
- strategies = compile_graph(x, net)
- for (k, v) in strategies.items():
- if re.search('VirtualOutput-op', k) is not None:
- assert v[0][0] == 1
-
- def test_reshape_mul_auto():
- context.set_auto_parallel_context(device_num=8, global_rank=0, parallel_mode="auto_parallel", full_batch=True)
- net = ReshapeMulNet()
- x = Tensor(np.ones([64, 4]), ms.float32)
- strategies = compile_graph(x, net)
- for (k, v) in strategies.items():
- if re.search('VirtualOutput-op', k) is not None:
- assert v[0][0] == 1
-
- def test_scalar_output_semi_auto():
- context.set_auto_parallel_context(device_num=8, global_rank=0, parallel_mode="semi_auto_parallel", full_batch=False)
- net = ParallelMulNet()
- loss_fn = nn.SoftmaxCrossEntropyWithLogits(reduction='mean')
- eval_net = nn.WithEvalCell(net, loss_fn)
- x = Tensor(np.ones([4096, 1, 2, 1024]).astype(np.float32)*0.01)
- label = Tensor(np.ones([4096, 250]).astype(np.float32)*0.01)
- strategies = compile_graph_two_input(x, label, eval_net)
- count = 0
- for (k, v) in strategies.items():
- if re.search('VirtualOutput-op', k) is not None:
- assert v[0][0] == 8
- count += 1
- assert count == 1
-
- def test_scalar_output_auto():
- context.set_auto_parallel_context(device_num=8, global_rank=0, parallel_mode="auto_parallel", full_batch=False)
- net = ParallelMulNet()
- loss_fn = nn.SoftmaxCrossEntropyWithLogits(reduction='mean')
- eval_net = nn.WithEvalCell(net, loss_fn)
- x = Tensor(np.ones([4096, 1, 2, 1024]).astype(np.float32)*0.01)
- label = Tensor(np.ones([4096, 250]).astype(np.float32)*0.01)
- strategies = compile_graph_two_input(x, label, eval_net)
- count = 0
- for (k, v) in strategies.items():
- if re.search('VirtualOutput-op', k) is not None:
- assert v[0][0] == 8
- count += 1
- assert count == 1
|