You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

export.py 1.9 kB

5 years ago
5 years ago
5 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051
  1. # Copyright 2020 Huawei Technologies Co., Ltd
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. # ============================================================================
  15. """
  16. export network to infer `AIR` backend.
  17. """
  18. import argparse
  19. import numpy as np
  20. import mindspore
  21. from mindspore import Tensor
  22. from mindspore import context
  23. from mindspore.train.serialization import load_checkpoint, load_param_into_net, export
  24. from src.config import mnist_cfg as cfg
  25. from src.lenet import LeNet5
  26. parser = argparse.ArgumentParser(description='MindSpore MNIST Example')
  27. parser.add_argument('--device_target', type=str, default="Ascend",
  28. choices=['Ascend', 'GPU'],
  29. help='device where the code will be implemented (default: Ascend)')
  30. parser.add_argument('--ckpt_path', type=str, default="",
  31. help='if mode is test, must provide path where the trained ckpt file')
  32. args = parser.parse_args()
  33. if __name__ == "__main__":
  34. context.set_context(mode=context.GRAPH_MODE, device_target=args.device_target)
  35. # define fusion network
  36. network = LeNet5(cfg.num_classes)
  37. # load network checkpoint
  38. param_dict = load_checkpoint(args.ckpt_path)
  39. load_param_into_net(network, param_dict)
  40. # export network
  41. inputs = Tensor(np.ones([1, 1, cfg.image_height, cfg.image_width]), mindspore.float32)
  42. export(network, inputs, file_name=cfg.air_name, file_format='AIR')