You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

test_ops.py 38 kB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082
  1. # Copyright 2020 Huawei Technologies Co., Ltd
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. # ============================================================================
  15. """ test ops """
  16. import functools
  17. import numpy as np
  18. from mindspore import ops
  19. from mindspore.ops import functional as F
  20. from mindspore.ops import operations as P
  21. from mindspore.ops.operations import _grad_ops as G
  22. import mindspore.ops.composite as C
  23. import mindspore.nn as nn
  24. from mindspore import Tensor
  25. from mindspore.common import dtype as mstype
  26. from ..ut_filter import non_graph_engine
  27. from ....mindspore_test_framework.mindspore_test import mindspore_test
  28. from ....mindspore_test_framework.pipeline.forward.compile_forward\
  29. import (pipeline_for_compile_forward_ge_graph_for_case_by_case_config,
  30. pipeline_for_compile_forward_ge_graph_for_case_by_case_config_exception)
  31. from ....mindspore_test_framework.pipeline.gradient.compile_gradient\
  32. import pipeline_for_compile_grad_ge_graph_for_case_by_case_config
  33. class InputBackward(nn.Cell):
  34. def __init__(self, network):
  35. super(InputBackward, self).__init__()
  36. self.network = network
  37. self.network.set_train()
  38. self.grad = C.grad_all_with_sens
  39. def construct(self, x1, x2, x3, sens):
  40. return self.grad(self.network)(x1, x2, x3, sens)
  41. class NetForTupleInput(nn.Cell):
  42. def __init__(self, op):
  43. super(NetForTupleInput, self).__init__()
  44. self.op = op
  45. def construct(self, x1, x2):
  46. return self.op((x1, x2))
  47. class StridedSlicessdNet(nn.Cell):
  48. def __init__(self):
  49. super(StridedSlicessdNet, self).__init__()
  50. self.rank = P.Rank()
  51. def construct(self, x1):
  52. return P.StridedSlice(1, 1, 0, self.rank(x1), 0)(x1, (0, 0), (0, 0), (1, 1))
  53. class NetForConcat(nn.Cell):
  54. def __init__(self):
  55. super(NetForConcat, self).__init__()
  56. self.concat = P.Concat()
  57. def construct(self, x1):
  58. return self.concat((x1, x1))
  59. class NetForConcat1(nn.Cell):
  60. def __init__(self):
  61. super(NetForConcat1, self).__init__()
  62. self.concat = P.Concat()
  63. def construct(self, x1, x2):
  64. return self.concat((x1, x2))
  65. class NetForFlatten(nn.Cell):
  66. def __init__(self):
  67. super(NetForFlatten, self).__init__()
  68. self.flatten = P.Flatten()
  69. def construct(self, x, y):
  70. return self.flatten(x) + y
  71. class NetForFlatten0D(nn.Cell):
  72. def __init__(self):
  73. super(NetForFlatten0D, self).__init__()
  74. self.flatten = P.Flatten()
  75. def construct(self, x):
  76. return self.flatten(x)
  77. class ArgmaxNet(nn.Cell):
  78. def __init__(self):
  79. super(ArgmaxNet, self).__init__()
  80. self.argmax = P.Argmax(axis=1)
  81. def construct(self, input):
  82. return self.argmax(input)
  83. class ArgminNet(nn.Cell):
  84. def __init__(self):
  85. super(ArgminNet, self).__init__()
  86. self.argmin = P.Argmin(axis=1)
  87. def construct(self, input):
  88. return self.argmin(input)
  89. class CumSumNet(nn.Cell):
  90. def __init__(self):
  91. super(CumSumNet, self).__init__()
  92. self.cumsum = P.CumSum()
  93. self.axis = 1
  94. def construct(self, input):
  95. return self.cumsum(input, self.axis)
  96. class SummaryNet(nn.Cell):
  97. def __init__(self,):
  98. super(SummaryNet, self).__init__()
  99. self.s = P.ScalarSummary()
  100. self.add = P.TensorAdd()
  101. def construct(self, x, y):
  102. self.s("x1", x)
  103. return self.add(x, y)
  104. test_case_math_ops = [
  105. ('Neg', {
  106. 'block': P.Neg(),
  107. 'desc_inputs': [[1, 3, 4, 4]],
  108. 'desc_bprop': [[1, 3, 4, 4]]}),
  109. ('Sub', {
  110. 'block': P.Sub(),
  111. 'desc_inputs': [[3, 5], [2, 3, 3, 5]],
  112. 'desc_bprop': [[2, 3, 3, 5]]}),
  113. ('TensorAdd', {
  114. 'block': P.TensorAdd(),
  115. 'desc_inputs': [[3, 5], [2, 3, 3, 5]],
  116. 'desc_bprop': [[2, 3, 3, 5]]}),
  117. ('Mul0', {
  118. 'block': P.Mul(),
  119. 'desc_inputs': [[2, 3, 3, 5], [2, 3, 3, 5]],
  120. 'desc_bprop': [[2, 3, 3, 5]]}),
  121. ('Mul1', {
  122. 'block': P.Mul(),
  123. 'desc_inputs': [[2, 3, 1, 1], [2, 3, 3, 5]],
  124. 'desc_bprop': [[2, 3, 3, 5]]}),
  125. ('Mul2', {
  126. 'block': P.Mul(),
  127. 'desc_inputs': [[2, 3, 3, 5], [2, 3, 1, 1]],
  128. 'desc_bprop': [[2, 3, 3, 5]],
  129. 'skip': ['backward']}),
  130. ('Mul3', {
  131. 'block': P.Mul(),
  132. 'desc_inputs': [[3, 5], [2, 3, 3, 5]],
  133. 'desc_bprop': [[2, 3, 3, 5]],
  134. 'skip': ['backward']}),
  135. ('Mul4', {
  136. 'block': P.Mul(),
  137. 'desc_inputs': [[2, 3, 3, 5], [3, 5]],
  138. 'desc_bprop': [[2, 3, 3, 5]],
  139. 'skip': ['backward']}),
  140. ('Add0', {
  141. 'block': P.TensorAdd(),
  142. 'desc_inputs': [[2, 3, 3, 5], [2, 3, 3, 5]],
  143. 'desc_bprop': [[2, 3, 3, 5]]}),
  144. ('Add1', {
  145. 'block': P.TensorAdd(),
  146. 'desc_inputs': [[3, 5], [2, 3, 3, 5]],
  147. 'desc_bprop': [[2, 3, 3, 5]],
  148. 'skip': ['backward']}),
  149. ('Add2', {
  150. 'block': P.TensorAdd(),
  151. 'desc_inputs': [[2, 3, 3, 5], [3, 5]],
  152. 'desc_bprop': [[2, 3, 3, 5]],
  153. 'skip': ['backward']}),
  154. ('Add3', {
  155. 'block': P.TensorAdd(),
  156. 'desc_inputs': [[2, 3, 1, 1], [2, 3, 3, 5]],
  157. 'desc_bprop': [[2, 3, 3, 5]],
  158. 'skip': ['backward']}),
  159. ('Add4', {
  160. 'block': P.TensorAdd(),
  161. 'desc_inputs': [[2, 3, 3, 5], [2, 3, 1, 1]],
  162. 'desc_bprop': [[2, 3, 3, 5]],
  163. 'skip': ['backward']}),
  164. ('Minimum', {
  165. 'block': P.Minimum(),
  166. 'desc_inputs': [[2, 3, 3, 5], [2, 3, 3, 5]],
  167. 'desc_bprop': [[2, 3, 3, 5]]}),
  168. ('Pow', {
  169. 'block': P.Pow(),
  170. 'desc_const': [2.0],
  171. 'desc_inputs': [[2, 3, 3, 5]],
  172. 'desc_bprop': [[2, 3, 3, 5]]}),
  173. ('Exp', {
  174. 'block': P.Exp(),
  175. 'desc_inputs': [[2, 3]],
  176. 'desc_bprop': [[2, 3]]}),
  177. ('Floor', {
  178. 'block': P.Floor(),
  179. 'desc_inputs': [[2, 512, 56, 56]],
  180. 'desc_bprop': [[2, 512, 56, 56]],
  181. 'skip': ['backward']}),
  182. ('ACos', {
  183. 'block': P.ACos(),
  184. 'desc_inputs': [[2, 3]],
  185. 'desc_bprop': [[2, 3]]}),
  186. ('Sin', {
  187. 'block': P.Sin(),
  188. 'desc_inputs': [[2, 3]],
  189. 'desc_bprop': [[2, 3]]}),
  190. ('Reciprocal', {
  191. 'block': P.Reciprocal(),
  192. 'desc_inputs': [[2, 3, 3, 5]],
  193. 'desc_bprop': [[2, 3, 3, 5]]}),
  194. ('Minimum_0', {
  195. 'block': P.Minimum(),
  196. 'desc_inputs': [[2, 3, 3, 5], [3, 3, 5]],
  197. 'desc_bprop': [[2, 3, 3, 5]]}),
  198. ('Maximum', {
  199. 'block': P.Maximum(),
  200. 'desc_inputs': [[2, 3, 3, 5], [2, 3, 3, 5]],
  201. 'desc_bprop': [[2, 3, 3, 5]]}),
  202. ('Maximum_0', {
  203. 'block': P.Maximum(),
  204. 'desc_inputs': [[3, 5], [2, 3, 3, 5]],
  205. 'desc_bprop': [[2, 3, 3, 5]]}),
  206. ('MaximumGrad', {
  207. 'block': G.MaximumGrad(),
  208. 'desc_inputs': [[2, 3, 3, 5], [2, 3, 3, 5], [2, 3, 3, 5]],
  209. 'skip': ['backward']}),
  210. ('MinimumGrad', {
  211. 'block': G.MinimumGrad(),
  212. 'desc_inputs': [[2, 3, 3, 5], [2, 3, 3, 5], [2, 3, 3, 5]],
  213. 'skip': ['backward']}),
  214. ('StridedSlice', {
  215. 'block': P.StridedSlice(),
  216. 'desc_const': [(0, 1, 2, 1),
  217. (2, 3, 3, 4),
  218. (1, 1, 1, 1)],
  219. 'desc_inputs': [[2, 3, 3, 5]],
  220. 'desc_bprop': [[2, 2, 1, 3]]}),
  221. ('Slice_1', {
  222. 'block': P.Slice(),
  223. 'desc_const': [(0, 1, 2, 1),
  224. (1, 1, 1, 2)],
  225. 'desc_inputs': [[2, 3, 3, 5]],
  226. 'desc_bprop': [[1, 1, 1, 2]]}),
  227. ('StridedSliceGrad', {
  228. 'block': G.StridedSliceGrad(),
  229. 'desc_const': [(64, 1, 1024),
  230. (0, 1, 0),
  231. (64, 2, 1024),
  232. (1, 1, 1)],
  233. 'desc_inputs': [[64, 128, 1024]],
  234. 'skip': ['backward']}),
  235. ('RandomChoiceWithMask', {
  236. 'block': P.RandomChoiceWithMask(256),
  237. 'desc_inputs': [Tensor(np.random.rand(24000, 4).astype(np.bool_))],
  238. 'desc_bprop': [[256,4], [256,4]],
  239. 'skip': ['backward']}),
  240. ('LessEqual', {
  241. 'block': P.LessEqual(),
  242. 'desc_inputs': [Tensor(np.random.rand(4).astype(np.float16)),
  243. Tensor(np.random.rand(4).astype(np.float16))],
  244. 'skip': ['backward']}),
  245. ('Less', {
  246. 'block': P.Less(),
  247. 'desc_inputs': [[2, 1, 4, 5], [2, 1, 4, 5]],
  248. 'desc_bprop': [Tensor(np.zeros((2, 1, 4, 5), np.bool_))],
  249. 'skip': ['backward']}),
  250. ('RealDiv_0', {
  251. 'block': P.RealDiv(),
  252. 'desc_const': [Tensor(2048.0), Tensor(0.0)],
  253. 'desc_inputs': [],
  254. 'skip': ['backward']}),
  255. ('RealDiv', {
  256. 'block': P.RealDiv(),
  257. 'desc_inputs': [[4], Tensor(np.ones(4).astype(np.float32))],
  258. 'desc_bprop': [[4]]}),
  259. ('RealDiv_1', {
  260. 'block': P.RealDiv(),
  261. 'desc_inputs': [[512, 1024], [512, 1024]],
  262. 'desc_bprop': [[512, 1024]]}),
  263. ('FloorDiv', {
  264. 'block': P.FloorDiv(),
  265. 'desc_inputs': [Tensor(np.random.rand(4).astype(np.float16)),
  266. Tensor(np.random.rand(4).astype(np.float16))],
  267. 'skip': ['backward']}),
  268. ('identity', {
  269. 'block': ops.functional.identity,
  270. 'desc_inputs': [[2, 2]],
  271. 'skip': ['backward']}),
  272. ('MatMul_1', {
  273. 'block': P.MatMul(transpose_a=False, transpose_b=False),
  274. 'desc_inputs': [[1024, 160], [160, 1024]],
  275. 'desc_bprop': [[1024, 1024]]}),
  276. ('MatMul_2', {
  277. 'block': P.MatMul(transpose_a=True, transpose_b=True),
  278. 'desc_inputs': [[160, 1024], [1024, 160]],
  279. 'desc_bprop': [[1024, 1024]]}),
  280. ('Sub', {
  281. 'block': P.Sub(),
  282. 'desc_inputs': [[3], [3]],
  283. 'desc_bprop': [[3]]}),
  284. ('TruncatedNormal', {
  285. 'block': P.TruncatedNormal(),
  286. 'desc_const': [Tensor(np.array([1, 2, 3]))],
  287. 'desc_inputs': [],
  288. 'skip': ['backward'],
  289. 'add_fake_input': True}),
  290. ('Select', {
  291. 'block': P.Select(),
  292. 'desc_inputs': [Tensor(np.array([[True, False, False], [False, True, True]])),
  293. [2, 3], [2, 3]],
  294. 'desc_bprop': [[2, 3]]}),
  295. ('Rank', {
  296. 'block': P.Rank(),
  297. 'desc_inputs': [[2, 3]],
  298. 'skip': ['backward']}),
  299. ('InvertPermutation', {
  300. 'block': P.InvertPermutation(),
  301. 'desc_const': [(0, 3, 1, 2)],
  302. 'desc_inputs': [],
  303. 'skip': ['backward']}),
  304. ('Square', {
  305. 'block': P.Square(),
  306. 'desc_inputs': [[4]],
  307. 'desc_bprop': [[4]]}),
  308. ('Rsqrt', {
  309. 'block': P.Rsqrt(),
  310. 'desc_inputs': [[4]],
  311. 'desc_bprop': [[4]]}),
  312. ('Sqrt', {
  313. 'block': P.Sqrt(),
  314. 'desc_inputs': [[4]],
  315. 'desc_bprop': [[4]]}),
  316. ('RealDiv', {
  317. 'block': P.RealDiv(),
  318. 'desc_inputs': [[4, 5], [2, 3, 4, 5]],
  319. 'desc_bprop': [[2, 3, 4, 5]]}),
  320. ('Div', {
  321. 'block': P.Div(),
  322. 'desc_inputs': [[4, 5], [2, 3, 4, 5]],
  323. 'desc_bprop': [[2, 3, 4, 5]]}),
  324. ('Equal', {
  325. 'block': P.Equal(),
  326. 'desc_inputs': [[3, 4, 5], [4, 5]],
  327. 'desc_bprop': [Tensor(np.zeros((3, 4, 5), np.bool_))]}),
  328. ('NotEqual', {
  329. 'block': P.NotEqual(),
  330. 'desc_inputs': [[4, 1], [2, 3, 4, 5]],
  331. 'desc_bprop': [Tensor(np.ones((2, 3, 4, 5), np.bool_))]}),
  332. ('Greater', {
  333. 'block': P.Greater(),
  334. 'desc_inputs': [[2, 3, 4, 1], [4, 5]],
  335. 'desc_bprop': [Tensor(np.ones((2, 3, 4, 5), np.bool_))]}),
  336. ('GreaterEqual', {
  337. 'block': P.GreaterEqual(),
  338. 'desc_inputs': [[2, 3, 4, 1], [4, 5]],
  339. 'desc_bprop': [Tensor(np.ones((2, 3, 4, 5), np.bool_))]}),
  340. ('LogicalNot', {
  341. 'block': P.LogicalNot(),
  342. 'desc_inputs': [Tensor(np.zeros((3, 4, 5), np.bool_))],
  343. 'desc_bprop': [Tensor(np.ones((3, 4, 5), np.bool_))]}),
  344. ('LogicalAnd', {
  345. 'block': P.LogicalAnd(),
  346. 'desc_inputs': [Tensor(np.zeros((2, 3, 4), np.bool_)), Tensor(np.ones((1), np.bool_))],
  347. 'desc_bprop': [Tensor(np.zeros((2, 3, 4), np.bool_))]}),
  348. ('LogicalOr', {
  349. 'block': P.LogicalOr(),
  350. 'desc_inputs': [Tensor(np.zeros((3, 4, 5), np.bool_)), Tensor(np.ones((3, 1, 1), np.bool_))],
  351. 'desc_bprop': [Tensor(np.zeros((3, 4, 5), np.bool_))]}),
  352. ('NpuAllocFloatStatus', {
  353. 'block': P.NPUAllocFloatStatus(),
  354. 'desc_inputs': [],
  355. 'add_fack_input': True,
  356. 'fack_input_type': np.float32,
  357. 'desc_bprop': [Tensor(np.zeros([8]).astype(np.float32))],
  358. 'skip': ['backward']}),
  359. ('NpuGetFloatStatus', {
  360. 'block': P.NPUGetFloatStatus(),
  361. 'desc_inputs': [Tensor(np.zeros([8]).astype(np.float32))],
  362. 'desc_bprop': [Tensor(np.zeros([8]).astype(np.float32))],
  363. 'skip': ['backward']}),
  364. ('NpuClearFloatStatus', {
  365. 'block': P.NPUClearFloatStatus(),
  366. 'desc_inputs': [Tensor(np.zeros([8]).astype(np.float32))],
  367. 'desc_bprop': [Tensor(np.zeros([8]).astype(np.float32))],
  368. 'skip': ['backward']}),
  369. ('CheckValid', {
  370. 'block': P.CheckValid(),
  371. 'desc_inputs': [[20000, 4], [3]],
  372. 'desc_bprop': [[20000]],
  373. 'skip': ['backward']}),
  374. ('NMSWithMask', {
  375. 'block': P.NMSWithMask(0.5),
  376. 'desc_inputs': [[128, 5]],
  377. 'desc_bprop': [[128, 5], [128], [128]],
  378. 'skip': ['backward']}),
  379. ('Abs', {
  380. 'block': P.Abs(),
  381. 'desc_inputs': [[4]],
  382. 'desc_bprop': [[4]]}),
  383. ('CumSum', {
  384. 'block': P.CumSum(),
  385. 'desc_const': [0],
  386. 'desc_inputs': [Tensor(np.array([[3, 4],[1, 6]]).astype(np.float16))],
  387. 'desc_bprop': [Tensor(np.array([[3, 4],[4, 10]]).astype(np.float16))]}),
  388. ('ReduceSum_3', {
  389. 'block': P.ReduceSum(),
  390. 'desc_const': [0],
  391. 'desc_inputs': [[3, 2]],
  392. 'desc_bprop': [[2]]}),
  393. ('ReduceSum_4', {
  394. 'block': P.ReduceSum(keep_dims=True),
  395. 'desc_const': [0],
  396. 'desc_inputs': [[3, 2]],
  397. 'desc_bprop': [[1, 2]]}),
  398. ('ReduceSum_5', {
  399. 'block': P.ReduceSum(keep_dims=True),
  400. 'desc_inputs': [[2, 3, 4]],
  401. 'desc_bprop': [[1, 1, 1]]}),
  402. ('ReduceSum_6', {
  403. 'block': P.ReduceSum(),
  404. 'desc_inputs': [[2, 3, 4]],
  405. 'desc_bprop': [[1]]}),
  406. ('Sum_0', {
  407. 'block': P.ReduceSum(),
  408. 'desc_const': [(1,)],
  409. 'desc_inputs': [[3, 2]],
  410. 'desc_bprop': [[3]]}),
  411. ('Sum_1', {
  412. 'block': P.ReduceSum(keep_dims=True),
  413. 'desc_const': [(1,)],
  414. 'desc_inputs': [[3, 2]],
  415. 'desc_bprop': [[3, 1]]}),
  416. ('Sum_2', {
  417. 'block': P.ReduceSum(),
  418. 'desc_const': [(0, 1)],
  419. 'desc_inputs': [[3, 2]],
  420. 'desc_bprop': [[1]]}),
  421. ('Sum_3', {
  422. 'block': P.ReduceSum(),
  423. 'desc_const': [0],
  424. 'desc_inputs': [[3, 2]],
  425. 'desc_bprop': [[2]]}),
  426. ('Sum_4', {
  427. 'block': P.ReduceSum(keep_dims=True),
  428. 'desc_const': [0],
  429. 'desc_inputs': [[3, 2]],
  430. 'desc_bprop': [[1, 2]]}),
  431. ('Sum_5', {
  432. 'block': P.ReduceSum(keep_dims=True),
  433. 'desc_const': [()],
  434. 'desc_inputs': [[2, 3, 4]],
  435. 'desc_bprop': [[1, 1, 1]]}),
  436. ('Sum_6', {
  437. 'block': P.ReduceSum(),
  438. 'desc_const': [()],
  439. 'desc_inputs': [[2, 3, 4]],
  440. 'desc_bprop': [[1]]}),
  441. ('Sign', {
  442. 'block': P.Sign(),
  443. 'desc_inputs': [[3]],
  444. 'desc_bprop': [[3]]}),
  445. ('Round', {
  446. 'block': P.Round(),
  447. 'desc_inputs': [[3]],
  448. 'desc_bprop': [[3]]})
  449. ]
  450. test_case_nn_ops = [
  451. ('BiasAdd', {
  452. 'block': P.BiasAdd(),
  453. 'desc_inputs': [[1, 3, 3, 3], [3]],
  454. 'desc_bprop': [[1, 3, 3, 3]]}),
  455. ('BiasAddGrad', {
  456. 'block': G.BiasAddGrad(),
  457. 'desc_inputs': [[1, 3, 3, 3]],
  458. 'skip': ['backward']}),
  459. ('Gelu', {
  460. 'block': P.Gelu(),
  461. 'desc_inputs': [[1, 3, 4, 4]],
  462. 'desc_bprop': [[1, 3, 4, 4]]}),
  463. ('GeluGrad', {
  464. 'block': G.GeluGrad(),
  465. 'desc_inputs': [[2, 2], [2, 2], [2, 2]],
  466. 'desc_bprop': [[2, 2]],
  467. 'skip': ['backward']}),
  468. ('Tanh', {
  469. 'block': P.Tanh(),
  470. 'desc_inputs': [[1, 3, 4, 4]],
  471. 'desc_bprop': [[1, 3, 4, 4]]}),
  472. ('TanhGrad', {
  473. 'block': G.TanhGrad(),
  474. 'desc_inputs': [[1, 3, 4, 4], [1, 3, 4, 4]],
  475. 'desc_bprop': [[1, 3, 4, 4]],
  476. 'skip': ['backward']}),
  477. ('ReLU', {
  478. 'block': P.ReLU(),
  479. 'desc_inputs': [[1, 3, 4, 4]],
  480. 'desc_bprop': [[1, 3, 4, 4]]}),
  481. ('ReLU6', {
  482. 'block': P.ReLU6(),
  483. 'desc_inputs': [[1, 3, 4, 4]],
  484. 'desc_bprop': [[1, 3, 4, 4]]}),
  485. ('ReLUGrad', {
  486. 'block': G.ReluGrad(),
  487. 'desc_inputs': [[1, 3, 4, 4], [1, 3, 4, 4]],
  488. 'skip': ['backward']}),
  489. ('Elu', {
  490. 'block': P.Elu(),
  491. 'desc_inputs': [[2, 3, 4]],
  492. 'desc_bprop': [[2, 3, 4]]}),
  493. ('EluGrad', {
  494. 'block': G.EluGrad(),
  495. 'desc_inputs': [[2, 3, 4], [2, 3, 4]],
  496. 'desc_bprop': [[2, 3, 4]],
  497. 'skip': ['backward']}),
  498. ('Sigmoid', {
  499. 'block': P.Sigmoid(),
  500. 'desc_inputs': [[1, 3, 4, 4]],
  501. 'desc_bprop': [[1, 3, 4, 4]]}),
  502. ('MaxPool', {
  503. 'block': P.MaxPool(ksize=(2, 2), strides=(2, 2), padding="VALID"),
  504. 'desc_inputs': [[100, 3, 28, 28]],
  505. 'desc_bprop': [[100, 3, 14, 14]]}),
  506. ('MaxPoolGrad', {
  507. 'block': G.MaxPoolGrad(ksize=(2, 2), strides=(2, 2), padding="VALID"),
  508. 'desc_inputs': [[3, 4, 6, 6], [3, 4, 3, 3], [3, 4, 3, 3]],
  509. 'desc_bprop': [[3, 4, 6, 6]],
  510. 'skip': ['backward']}),
  511. ('AvgPool', {
  512. 'block': P.AvgPool(ksize=(2, 2), strides=(2, 2), padding="VALID"),
  513. 'desc_inputs': [[100, 3, 28, 28]],
  514. 'desc_bprop': [[100, 3, 14, 14]]}),
  515. ('AvgPoolGrad', {
  516. 'block': G.AvgPoolGrad(ksize=(2, 2), strides=(2, 2), padding="VALID"),
  517. 'desc_const': [(3, 4, 6, 6)],
  518. 'const_first': True,
  519. 'desc_inputs': [[3, 4, 6, 6]],
  520. 'desc_bprop': [[3, 4, 6, 6]],
  521. 'skip': ['backward']}),
  522. ('MaxPoolWithArgmax', {
  523. 'block': P.MaxPoolWithArgmax(window=2, stride=2),
  524. 'desc_inputs': [[128, 32, 32, 64]],
  525. 'desc_bprop': [[128, 32, 8, 16], [128, 32, 8, 16]]}),
  526. ('SoftmaxCrossEntropyWithLogits', {
  527. 'block': P.SoftmaxCrossEntropyWithLogits(),
  528. 'desc_inputs': [[1, 10], [1, 10]],
  529. 'desc_bprop': [[1], [1, 10]],
  530. 'skip': ['backward_exec']}),
  531. ('Flatten', {
  532. 'block': P.Flatten(),
  533. 'desc_inputs': [[128, 32, 32, 64]],
  534. 'desc_bprop': [[128 * 32 * 8 * 16]]}),
  535. ('LogSoftmax', {
  536. 'block': P.LogSoftmax(),
  537. 'desc_inputs': [[64, 2]],
  538. 'desc_bprop': [[160, 30522]]}),
  539. ('LogSoftmaxGrad', {
  540. 'block': G.LogSoftmaxGrad(),
  541. 'desc_inputs': [[16, 1234], [16, 1234]],
  542. 'desc_bprop': [[64, 2]],
  543. 'skip': ['backward']}),
  544. ('LayerNorm', {
  545. 'block': P.LayerNorm(),
  546. 'desc_inputs': [[2, 16], [16], [16]],
  547. 'desc_bprop': [[2, 16], [2, 16], [2, 16]]}),
  548. ('LayerNormGrad', {
  549. 'block': G.LayerNormGrad(),
  550. 'desc_inputs': [[2, 16], [2, 16], [2, 16], [2, 16], [16]],
  551. 'desc_bprop': [[2, 16], [16], [16]],
  552. 'skip': ['backward']}),
  553. ('FusedBatchNorm', {
  554. 'block': P.FusedBatchNorm(),
  555. 'desc_inputs': [[128, 64, 32, 64], [64], [64], [64], [64]],
  556. 'desc_bprop': [[128, 64, 32, 64], [64], [64], [64], [64]],
  557. 'skip': []}),
  558. ('FusedBatchNormGrad', {
  559. 'block': G.FusedBatchNormGrad(),
  560. 'desc_inputs': [[128, 64, 32, 64], [128, 64, 32, 64], [64], [64], [64]],
  561. 'desc_bprop': [[128, 64, 32, 64], [64], [64], [64], [64]],
  562. 'skip': ['backward']}),
  563. ('BatchNorm', {
  564. 'block': P.BatchNorm(),
  565. 'desc_inputs': [[128, 64, 32, 32], [64], [64], [64], [64]],
  566. 'desc_bprop': [[128, 64, 32, 32], [64], [64], [64], [64]],
  567. 'skip': []}),
  568. ('BatchNormGrad', {
  569. 'block': G.BatchNormGrad(),
  570. 'desc_inputs': [[128, 64, 32, 32], [128, 64, 32, 32], [64], [64], [64], [64]],
  571. 'desc_bprop': [[128, 64, 32, 32], [64], [64], [64], [64]],
  572. 'skip': ['backward']}),
  573. ('ApplyMomentum', {
  574. 'block': P.ApplyMomentum(),
  575. 'desc_inputs': [[128, 32, 32, 64], [128, 32, 32, 64],
  576. [32, 32, 64], [32, 32, 64], [32, 32, 64]],
  577. 'desc_bprop': [[128, 32, 32, 64]],
  578. 'skip': ['backward']}),
  579. ('TopK', {
  580. 'block': P.TopK(),
  581. 'desc_const': [5],
  582. 'desc_inputs': [[20, 20, 10]],
  583. 'desc_bprop': [[20, 20, 5]],
  584. 'skip': ['backward']}),
  585. ('GatherV2_0', {
  586. 'block': P.GatherV2(),
  587. 'desc_const': [0],
  588. 'desc_inputs': [[3, 1, 2], Tensor(np.array([0, 1]).astype(np.int32))],
  589. 'desc_bprop': [[2, 1, 2]]}),
  590. ('GatherV2_1', {
  591. 'block': P.GatherV2(),
  592. 'desc_const': [2],
  593. 'desc_inputs': [[3, 1, 3], Tensor(np.array([0, 1]).astype(np.int32))],
  594. 'desc_bprop': [[3, 1, 2]]}),
  595. ('GatherV2_2', {
  596. 'block': P.GatherV2(),
  597. 'desc_const': [0],
  598. 'desc_inputs': [[3, 1, 3], Tensor(np.array([[0, 1], [0, 1], [0, 1]]).astype(np.int32))],
  599. 'desc_bprop': [[3, 2, 1, 3]]}),
  600. ('GatherV2_3', {
  601. 'block': P.GatherV2(),
  602. 'desc_const': [2],
  603. 'desc_inputs': [[3, 1, 3], Tensor(np.array([[0, 1], [0, 1], [0, 1]]).astype(np.int32))],
  604. 'desc_bprop': [[3, 1, 3, 2]]}),
  605. ('GatherV2_4', {
  606. 'block': P.GatherV2(),
  607. 'desc_const': [1],
  608. 'desc_inputs': [[32, 5, 1024], Tensor(np.array([3]).astype(np.int32))],
  609. 'desc_bprop': [[32, 1, 1024]]}),
  610. ('GatherV2_5', {
  611. 'block': P.GatherV2(),
  612. 'desc_const': [-1],
  613. 'desc_inputs': [[3, 1, 3], Tensor(np.array([0, 1]).astype(np.int32))],
  614. 'desc_bprop': [[3, 1, 2]]}),
  615. ('GatherV2_6', {
  616. 'block': P.GatherV2(),
  617. 'desc_const': [0],
  618. 'desc_inputs': [[1152], Tensor(np.array(10).astype(np.int32))],
  619. 'desc_bprop': [Tensor(np.array(10).astype(np.float32))]}),
  620. ('UnsortedSegmentSum', {
  621. 'block': P.UnsortedSegmentSum(),
  622. 'desc_const': [1280],
  623. 'desc_inputs': [[1280,1024], Tensor(np.ones(1280).astype(np.int32))],
  624. 'desc_bprop': [[8192,1024]],
  625. 'skip': ['backward']}),
  626. ('UnsortedSegmentSum_1', {
  627. 'block': P.UnsortedSegmentSum(),
  628. 'desc_const': [4],
  629. 'desc_inputs': [[3, 2, 1, 3], Tensor(np.array([[0, 1], [0, 1], [0, 1]]).astype(np.int32))],
  630. 'desc_bprop': [[4, 1, 3]],
  631. 'skip': ['backward']}),
  632. ('DropoutGenMask', {
  633. 'block': P.DropoutGenMask(),
  634. 'desc_const': [(2, 2), Tensor(0.5, mstype.float32)],
  635. 'desc_inputs': [],
  636. 'desc_bprop': [Tensor(np.ones(1).astype(np.int8))],
  637. 'skip': ['backward']}),
  638. ('DropoutDoMask', {
  639. 'block': P.DropoutDoMask(),
  640. 'desc_const': [Tensor(0.5)],
  641. 'desc_inputs': [[64, 12, 128, 128], Tensor(np.ones(1572864).astype(np.uint8))],
  642. 'desc_bprop': [[64, 12, 128, 128]]}),
  643. ('Dropout', {
  644. 'block': nn.Dropout(0.5),
  645. 'desc_inputs': [[64, 12, 128, 128]],
  646. 'desc_bprop': [[64, 12, 128, 128]]}),
  647. ('ReduceMean0', {
  648. 'block': P.ReduceMean(),
  649. 'desc_const': [(2,)],
  650. 'desc_inputs': [[3, 2, 2]],
  651. 'desc_bprop': [[3, 2]]}),
  652. ('ReduceMean1', {
  653. 'block': P.ReduceMean(),
  654. 'desc_const': [2],
  655. 'desc_inputs': [[3, 2, 2]],
  656. 'desc_bprop': [[3, 2]]}),
  657. ('All', {
  658. 'block': P.ReduceAll(),
  659. 'desc_const': [(1,)],
  660. 'desc_inputs': [Tensor(np.ones([3, 2]).astype(np.bool_))],
  661. 'desc_bprop': [[3]],
  662. 'skip': ['backward']}),
  663. ('DescConst', {
  664. 'block': Tensor(np.array([2], np.float32)),
  665. 'desc_inputs': [],
  666. 'desc_bprop': [[1]],
  667. 'skip': ['backward'],
  668. 'add_fake_input': True}),
  669. ('Fill', {
  670. 'block': P.Fill(),
  671. 'desc_const': [mstype.float32, (2, 3), 1.0],
  672. 'desc_inputs': [],
  673. 'desc_bprop': [[2, 3]],
  674. 'skip': ['backward'],
  675. 'add_fake_input': True}),
  676. ('OnesLike', {
  677. 'block': P.OnesLike(),
  678. 'desc_inputs': [Tensor(np.array([[0, 1], [2, 1]]).astype(np.int32))],
  679. 'desc_bprop': [Tensor(np.array([[1, 1], [1, 1]]).astype(np.int32))]
  680. }),
  681. ('ZerosLike', {
  682. 'block': P.ZerosLike(),
  683. 'desc_inputs': [Tensor(np.array([[0, 1], [2, 1]]).astype(np.int32))],
  684. 'desc_bprop': [Tensor(np.array([[1, 1], [1, 1]]).astype(np.int32))]
  685. }),
  686. ('Softmax', {
  687. 'block': P.Softmax(),
  688. 'desc_inputs': [[5, 5]],
  689. 'desc_bprop': [[5, 5]]}),
  690. ('DepthwiseConv2dNative_1', {
  691. 'block': P.DepthwiseConv2dNative(3, (3, 3), pad_mode="pad", pad=1, stride=2),
  692. 'desc_inputs': [[10, 32, 32, 32], [3, 32, 3, 3]],
  693. 'desc_bprop': [[10, 30, 16, 16]]}),
  694. ('DepthwiseConv2dNative_2', {
  695. 'block': P.DepthwiseConv2dNative(1, (3, 3), pad_mode="same", pad=0, stride=1),
  696. 'desc_inputs': [[2592, 2048, 4, 4], [1, 2048, 3, 3]],
  697. 'desc_bprop': [[2592, 2048, 2, 2]]}),
  698. ('SigmoidCrossEntropyWithLogits', {
  699. 'block': P.SigmoidCrossEntropyWithLogits(),
  700. 'desc_inputs': [[128, 10], [128, 10]],
  701. 'desc_bprop': [[128, 10]]}),
  702. ('Pad', {
  703. 'block': P.Pad(((1, 2), (2, 3))),
  704. 'desc_inputs': [[7, 7]],
  705. 'desc_bprop': [[10, 12]]}),
  706. ('BinaryCrossEntropy', {
  707. 'block': P.BinaryCrossEntropy(),
  708. 'desc_inputs': [[1, 2, 3], [1, 2, 3], [1, 2, 3]],
  709. 'desc_bprop': []}),
  710. ('SparseApplyAdagrad', {
  711. 'block': P.SparseApplyAdagrad(0.5),
  712. 'desc_inputs': [[3, 3], [3, 3], [3, 3], Tensor(np.ones((3,), np.int32))],
  713. 'desc_bprop': [3, 3],
  714. 'skip': ['backward']}),
  715. ('SparseApplyFtrlD', {
  716. 'block': P.SparseApplyFtrlD(0.1, 0.1, 0.1, -0.1),
  717. 'desc_inputs': [[3, 3], [3, 3], [3, 3], [3, 3], Tensor(2*np.ones((3,), np.int32))],
  718. 'desc_bprop': [3, 3],
  719. 'skip': ['backward']}),
  720. ('Flatten_1', {
  721. 'block': NetForFlatten(),
  722. 'desc_inputs': [Tensor(np.ones([2, 3, 4]).astype(np.int32)), Tensor(np.ones([2, 12]).astype(np.int32))],
  723. 'desc_bprop': [Tensor(np.ones([2, 12]).astype(np.int32))],
  724. 'skip': ['backward']}),
  725. ('Flatten_2', {
  726. 'block': NetForFlatten(),
  727. 'desc_inputs': [Tensor(np.ones([8]).astype(np.int32)), Tensor(np.ones([8, 3]).astype(np.int32))],
  728. 'desc_bprop': [Tensor(np.ones([8, 3]).astype(np.int32))],
  729. 'skip': ['backward']}),
  730. ('ArgmaxNet', {
  731. 'block': ArgmaxNet(),
  732. 'desc_inputs': [Tensor(np.array([[128, 32, 32, 64],[128, 32, 32, 64]]).astype(np.float16))],
  733. 'desc_bprop': [Tensor(np.array([[128, 32, 32, 64],[128, 32, 32, 64]]).astype(np.float16))],
  734. 'skip': ['backward']}),
  735. ('ArgminNet', {
  736. 'block': ArgminNet(),
  737. 'desc_inputs': [Tensor(np.array([[128, 32, 32, 64],[128, 32, 32, 64]]).astype(np.float16))],
  738. 'desc_bprop': [Tensor(np.array([[128, 32, 32, 64],[128, 32, 32, 64]]).astype(np.float16))],
  739. 'skip': ['backward']}),
  740. ('CumSumNet', {
  741. 'block': CumSumNet(),
  742. 'desc_const': [0],
  743. 'desc_inputs': [Tensor(np.array([[3, 4, 6, 10],[1, 6, 7, 9],[4, 3, 8, 7],[1, 3, 7, 9]]).astype(np.float16))],
  744. 'desc_bprop': [Tensor(np.array([[3, 4, 6, 10],[1, 6, 7, 9],[4, 3, 8, 7],[1, 3, 7, 9]]).astype(np.float16))]}),
  745. ('OneHot', {
  746. 'block': P.OneHot(),
  747. 'desc_const': [3, Tensor(1.0, mstype.float32), Tensor(0.0, mstype.float32)],
  748. 'desc_inputs': [Tensor(np.array([64]).astype(np.int32))],
  749. 'desc_bprop': [[64, 2]]}),
  750. ('ReduceProd_0', {
  751. 'block': P.ReduceProd(),
  752. 'desc_const': [0],
  753. 'desc_inputs': [[3, 2]],
  754. 'desc_bprop': [[2]]}),
  755. ('ReduceProd_1', {
  756. 'block': P.ReduceProd(keep_dims=True),
  757. 'desc_const': [0],
  758. 'desc_inputs': [[3, 2]],
  759. 'desc_bprop': [[1, 2]]}),
  760. ('CumProd', {
  761. 'block': P.CumProd(),
  762. 'desc_const': [0],
  763. 'desc_inputs': [[3, 2]],
  764. 'desc_bprop': [[3, 2]]}),
  765. ('ApplyFtrl', {
  766. 'block': P.ApplyFtrl(),
  767. 'desc_const': [0.001, 0.0, 0.0, -0.5],
  768. 'desc_inputs': [[3, 3], [3, 3], [3, 3], [3, 3]],
  769. 'desc_bprop': [3, 3],
  770. 'skip': ['backward']}),
  771. ]
  772. test_case_array_ops = [
  773. ('SpaceToDepth', {
  774. 'block': P.SpaceToDepth(2),
  775. 'desc_inputs': [[1, 3, 2, 2]],
  776. 'desc_bprop': [[1, 12, 1, 1]]}),
  777. ('DepthToSpace', {
  778. 'block': P.DepthToSpace(2),
  779. 'desc_inputs': [[1, 12, 1, 1]],
  780. 'desc_bprop': [[1, 3, 2, 2]]}),
  781. ('Split', {
  782. 'block': P.Split(1, 2),
  783. 'desc_inputs': [Tensor(np.array([[1, 1, 1, 1], [2, 2, 2, 2]]))],
  784. 'skip': ['backward']}),
  785. ('Argmax', {
  786. 'block': P.Argmax(),
  787. 'desc_inputs': [[128, 32, 32, 64]],
  788. 'desc_bprop': [0],
  789. 'skip': ['backward']}),
  790. ('Argmin', {
  791. 'block': P.Argmin(),
  792. 'desc_inputs': [[128, 32, 32, 64]],
  793. 'desc_bprop': [1],
  794. 'skip': ['backward']}),
  795. ('ArgMaxWithValue', {
  796. 'block': P.ArgMaxWithValue(),
  797. 'desc_inputs': [[128, 32, 32, 64]],
  798. 'desc_bprop': [[1], [1]],
  799. 'skip': ['backward']}),
  800. ('ArgMinWithValue', {
  801. 'block': P.ArgMinWithValue(),
  802. 'desc_inputs': [[128, 32, 32, 64]],
  803. 'desc_bprop': [[1], [1]],
  804. 'skip': ['backward']}),
  805. ('Transpose_dim3', {
  806. 'block': P.Transpose(),
  807. 'desc_const': [(0, 2, 1)],
  808. 'desc_inputs': [[1, 2, 3]],
  809. 'desc_bprop': [[1, 3, 2]]}),
  810. ('Transpose_dim4', {
  811. 'block': P.Transpose(),
  812. 'desc_const': [(0, 1, 2, 3)],
  813. 'desc_inputs': [[1, 2, 3, 4]],
  814. 'desc_bprop': [[1, 2, 4, 3]]}),
  815. ('AddN', {
  816. 'block': NetForTupleInput(P.AddN()),
  817. 'desc_inputs': [[2, 3, 3, 5], [2, 3, 3, 5]],
  818. 'desc_bprop': [[2, 3, 3, 5]],
  819. 'skip': ['backward']}),
  820. ('Shape', {
  821. 'block': P.Shape(),
  822. 'desc_inputs': [[3, 3, 2, 2]],
  823. 'skip': ['backward']}),
  824. ('Reshape', {
  825. 'block': P.Reshape(),
  826. 'desc_const': [(64,)],
  827. 'desc_inputs': [[64, 1]],
  828. 'desc_bprop': [[64]]}),
  829. ('Cast', {
  830. 'block': P.Cast(),
  831. 'desc_const': [mstype.int32],
  832. 'desc_inputs': [[2, 3, 4, 5]],
  833. 'desc_bprop': [Tensor(np.ones((2, 3, 3, 5)).astype(np.int32))]}),
  834. ('ExpandDims', {
  835. 'block': P.ExpandDims(),
  836. 'desc_const': [0],
  837. 'desc_inputs': [[2, 2]],
  838. 'desc_bprop': [[1, 2, 2]]}),
  839. ('ExpandDims_1', {
  840. 'block': P.ExpandDims(),
  841. 'desc_const': [-1],
  842. 'desc_inputs': [[2, 2]],
  843. 'desc_bprop': [[2, 2, 1]]}),
  844. ('Squeeze', {
  845. 'block': P.Squeeze(2),
  846. 'desc_inputs': [[3, 2, 1]],
  847. 'desc_bprop': [[3, 2]]}),
  848. ('Squeeze_0', {
  849. 'block': P.Squeeze(),
  850. 'desc_inputs': [[3, 1, 2, 1]],
  851. 'desc_bprop': [[3, 2]]}),
  852. ('Squeeze_1', {
  853. 'block': P.Squeeze(),
  854. 'desc_inputs': [[1, 1, 1, 1]],
  855. 'desc_bprop': [1.0],
  856. 'skip': ['backward']}),
  857. ('Squeeze_2', {
  858. 'block': P.Squeeze((2, 3)),
  859. 'desc_inputs': [[3, 2, 1, 1]],
  860. 'desc_bprop': [[3, 2]]}),
  861. ('Size', {
  862. 'block': P.Size(),
  863. 'desc_inputs': [[2, 3, 5]],
  864. 'skip': ['backward']}),
  865. ('Tile_0', {
  866. 'block': P.Tile(),
  867. 'desc_const': [(1, 2)],
  868. 'desc_inputs': [[64, 1]],
  869. 'desc_bprop': [[64, 2]]}),
  870. ('Tile_1', {
  871. 'block': P.Tile(),
  872. 'desc_const': [(1, 1)],
  873. 'desc_inputs': [[64, 1]],
  874. 'desc_bprop': [[64, 1]]}),
  875. ('Tile_2', {
  876. 'block': P.Tile(),
  877. 'desc_const': [(2, 1, 1, 2)],
  878. 'desc_inputs': [[2, 2, 2]],
  879. 'desc_bprop': [[2, 2, 2, 4]]}),
  880. ('ConcatV2_0', {
  881. 'block': P.Concat(),
  882. 'desc_inputs': [
  883. (Tensor(np.array([[0, 1], [2, 1]]).astype(np.int32)),
  884. Tensor(np.array([[0, 1], [2, 1]]).astype(np.int32)))],
  885. 'desc_bprop': [[4, 2]]}),
  886. ('ConcatV2_1', {
  887. 'block': P.Concat(axis=2),
  888. 'desc_inputs': [(Tensor(np.array([[[0, 1, 2]], [[2, 1, 2]]]).astype(np.int32)),
  889. Tensor(np.array([[[0, 1]], [[2, 1]]]).astype(np.int32)))],
  890. 'desc_bprop': [[2, 1, 5]]}),
  891. ('ConcatV2_2', {
  892. 'block': NetForConcat(),
  893. 'desc_inputs': [[2, 2]],
  894. 'desc_bprop': [[4, 2]]}),
  895. ('ConcatV2_3', {
  896. 'block': NetForConcat1(),
  897. 'desc_inputs': [[2, 2], [2, 2]],
  898. 'desc_bprop': [[4, 2]]}),
  899. ('ConcatV2_4', {
  900. 'block': P.Concat(axis=0),
  901. 'desc_inputs': [
  902. (Tensor(np.ones((3, 2, 3), np.float32)),
  903. Tensor(np.ones((5, 2, 3), np.float32)),
  904. Tensor(np.ones((6, 2, 3), np.float32)))],
  905. 'desc_bprop': [[14, 2, 3]]}),
  906. ('ConcatV2_5', {
  907. 'block': P.Concat(axis=-1),
  908. 'desc_inputs': [(Tensor(np.array([1], np.float32)),
  909. Tensor(np.array([1], np.float32)),
  910. Tensor(np.array([1], np.float32)))],
  911. 'desc_bprop': [[3,]]}),
  912. ('Diag', {
  913. 'block': P.Diag(),
  914. 'desc_inputs': [[4]],
  915. 'desc_bprop': [[4, 4]],
  916. }),
  917. ('DiagPart', {
  918. 'block': P.DiagPart(),
  919. 'desc_inputs': [[4, 4]],
  920. 'desc_bprop': [[4]],
  921. }),
  922. ('SpaceToBatch_1', {
  923. 'block': P.SpaceToBatch(2, [[0, 0], [0, 0]]),
  924. 'desc_inputs': [[1, 3, 2, 2]],
  925. 'desc_bprop': [[4, 3, 1, 1]],
  926. }),
  927. ('SpaceToBatch_2', {
  928. 'block': P.SpaceToBatch(2, [[1, 1], [0, 4]]),
  929. 'desc_inputs': [[1, 3, 2, 2]],
  930. 'desc_bprop': [[4, 3, 2, 4]],
  931. }),
  932. ('BatchToSpace_1', {
  933. 'block': P.BatchToSpace(2, [[0, 0], [0, 0]]),
  934. 'desc_inputs': [[4, 3, 1, 1]],
  935. 'desc_bprop': [[1, 3, 2, 2]],
  936. }),
  937. ('BatchToSpace_2', {
  938. 'block': P.BatchToSpace(2, [[0, 0], [0, 1]]),
  939. 'desc_inputs': [[4, 3, 1, 1]],
  940. 'desc_bprop': [[1, 3, 2, 1]],
  941. }),
  942. ]
  943. test_case_other_ops = [
  944. ('ScalarLog', {
  945. 'block': F.scalar_log,
  946. 'desc_const': [0.0],
  947. 'desc_inputs': [],
  948. 'desc_bprop': [1],
  949. 'skip': ['backward']}),
  950. ('BoundingBoxEncode', {
  951. 'block': P.BoundingBoxEncode(means=(0.0, 0.0, 0.0, 0.0), stds=(1.0, 1.0, 1.0, 1.0)),
  952. 'desc_inputs': [[256, 4], [256, 4]],
  953. 'desc_bprop': [[256, 4]],
  954. 'skip': ['backward']}),
  955. ('BoundingBoxDecode', {
  956. 'block': P.BoundingBoxDecode(means=(0.0, 0.0, 0.0, 0.0), stds=(1.0, 1.0, 1.0, 1.0), max_shape=(768, 1280)),
  957. 'desc_inputs': [[256, 4], [256, 4]],
  958. 'desc_bprop': [[256, 4]],
  959. 'skip': ['backward']}),
  960. ('GatherNd', {
  961. 'block': P.GatherNd(),
  962. 'desc_inputs': (Tensor(np.ones((1, 3, 6, 6), np.float32)),
  963. Tensor(np.ones((2, 4), np.int32))),
  964. 'desc_bprop': [[2]]}),
  965. ('ScatterNdUpdate', {
  966. 'block': P.ScatterNdUpdate(),
  967. 'desc_inputs': (Tensor(np.ones((2, 3), np.float32)),
  968. Tensor(np.ones((2, 2), np.int32)),
  969. Tensor(np.ones((2,), np.float32))),
  970. 'desc_bprop': [[2, 3]]}),
  971. ('ScatterNd', {
  972. 'block': P.ScatterNd(),
  973. 'desc_const': [(3, 3)],
  974. 'desc_inputs': (Tensor(np.ones((2, 2), np.int32)),
  975. Tensor(np.ones((2,), np.int32))),
  976. 'desc_bprop': [[3, 3]]}),
  977. ('SmoothL1Loss', {
  978. 'block': P.SmoothL1Loss(),
  979. 'desc_inputs': [[256, 4], [256, 4]],
  980. 'desc_bprop': [[256, 4]]}),
  981. ('IOU', {
  982. 'block': P.IOU(),
  983. 'desc_inputs': [Tensor(np.ones((256, 4), np.float16)), Tensor(np.ones((128, 4), np.float16))],
  984. 'desc_bprop': [[128, 256]]}),
  985. ('Summary', {
  986. 'block': SummaryNet(),
  987. 'desc_inputs': [Tensor(np.array([1.1]).astype(np.float32)),
  988. Tensor(np.array([1.2]).astype(np.float32))],
  989. 'skip': ['backward']}),
  990. ]
  991. test_case_lists = [test_case_nn_ops, test_case_math_ops, test_case_array_ops, test_case_other_ops]
  992. test_case = functools.reduce(lambda x, y: x + y, test_case_lists)
  993. # use -k to select certain testcast
  994. # pytest tests/python/ops/test_ops.py::test_backward -k LayerNorm
  995. test_exec_case = test_case
  996. test_backward_exec_case = filter(lambda x: 'skip' not in x[1] or
  997. 'backward' not in x[1]['skip'], test_case)
  998. import mindspore.context as context
  999. @non_graph_engine
  1000. @mindspore_test(pipeline_for_compile_forward_ge_graph_for_case_by_case_config)
  1001. def test_exec():
  1002. context.set_context(mode=context.GRAPH_MODE)
  1003. return test_exec_case
  1004. @mindspore_test(pipeline_for_compile_grad_ge_graph_for_case_by_case_config)
  1005. def test_backward_exec():
  1006. context.set_context(mode=context.GRAPH_MODE)
  1007. return test_backward_exec_case
  1008. raise_set = [
  1009. ('Cast_Error', {
  1010. 'block': (P.Cast(), {'exception': TypeError}),
  1011. 'desc_const': [mstype.int32],
  1012. 'desc_inputs': ['wrong input'],
  1013. 'desc_bprop': [Tensor(np.ones((2, 3, 3, 5)).astype(np.int32))]}),
  1014. ('Maximum_Error', {
  1015. 'block': (P.Maximum(), {'exception': TypeError}),
  1016. 'desc_const': [(1, 2, 3)],
  1017. 'desc_inputs': [[2, 3, 3, 5]],
  1018. 'desc_bprop': [[2, 3, 3, 5]]}),
  1019. ('Shape_error', {
  1020. 'block': (P.Shape(), {'exception': TypeError}),
  1021. 'desc_inputs': [(64, 1)],
  1022. 'desc_bprop': [[64]]}),
  1023. ('Flatten_Error', {
  1024. 'block': (NetForFlatten0D(), {'exception': ValueError}),
  1025. 'desc_inputs': [Tensor(np.array(0).astype(np.int32))],
  1026. 'desc_bprop': [Tensor(np.array(0).astype(np.int32))]}),
  1027. ]
  1028. @mindspore_test(pipeline_for_compile_forward_ge_graph_for_case_by_case_config_exception)
  1029. def test_check_exception():
  1030. return raise_set