You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

loss.py 1.5 kB

1234567891011121314151617181920212223242526272829303132333435363738
  1. # Copyright 2020 Huawei Technologies Co., Ltd
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # less required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. # ============================================================================
  15. import mindspore
  16. import mindspore.nn as nn
  17. import mindspore.ops.operations as F
  18. from mindspore.nn.loss.loss import _Loss
  19. class CrossEntropyWithLogits(_Loss):
  20. def __init__(self):
  21. super(CrossEntropyWithLogits, self).__init__()
  22. self.transpose_fn = F.Transpose()
  23. self.reshape_fn = F.Reshape()
  24. self.softmax_cross_entropy_loss = nn.SoftmaxCrossEntropyWithLogits()
  25. self.cast = F.Cast()
  26. def construct(self, logits, label):
  27. # NCHW->NHWC
  28. logits = self.transpose_fn(logits, (0, 2, 3, 1))
  29. logits = self.cast(logits, mindspore.float32)
  30. label = self.transpose_fn(label, (0, 2, 3, 1))
  31. loss = self.reduce_mean(
  32. self.softmax_cross_entropy_loss(self.reshape_fn(logits, (-1, 2)), self.reshape_fn(label, (-1, 2))))
  33. return self.get_loss(loss)