You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

export.py 1.9 kB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546
  1. # Copyright 2020 Huawei Technologies Co., Ltd
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. # ============================================================================
  15. """
  16. ##############export checkpoint file into air and onnx models#################
  17. """
  18. import argparse
  19. import numpy as np
  20. import mindspore as ms
  21. from mindspore import Tensor
  22. from mindspore.train.serialization import load_checkpoint, load_param_into_net, export
  23. from src.config import config_ascend as config
  24. from src.inceptionv4 import Inceptionv4
  25. def parse_args():
  26. '''parse_args'''
  27. parser = argparse.ArgumentParser(description='checkpoint export')
  28. parser.add_argument('--model_name', type=str, default='inceptionV4.air', help='convert model name of inceptionv4')
  29. parser.add_argument('--format', type=str, default='AIR', help='convert model name of inceptionv4')
  30. parser.add_argument('--checkpoint', type=str, default='', help='checkpoint of inceptionv4')
  31. _args_opt = parser.parse_args()
  32. return _args_opt
  33. if __name__ == '__main__':
  34. args_opt = parse_args()
  35. net = Inceptionv4(classes=config.num_classes)
  36. param_dict = load_checkpoint(args_opt.checkpoint)
  37. load_param_into_net(net, param_dict)
  38. input_arr = Tensor(np.random.uniform(0.0, 1.0, size=[1, 3, 299, 299]), ms.float32)
  39. export(net, input_arr, file_name=args_opt.model_name, file_format=args_opt.format)