You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

train.py 7.3 kB

5 years ago
5 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173
  1. # Copyright 2020 Huawei Technologies Co., Ltd
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. # ============================================================================
  15. """train Xception."""
  16. import os
  17. import time
  18. import argparse
  19. import numpy as np
  20. from mindspore import context
  21. from mindspore import Tensor
  22. from mindspore.nn.optim.momentum import Momentum
  23. from mindspore.train.model import Model, ParallelMode
  24. from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, Callback
  25. from mindspore.train.serialization import load_checkpoint, load_param_into_net
  26. from mindspore.communication.management import init, get_rank, get_group_size
  27. from mindspore.train.loss_scale_manager import FixedLossScaleManager
  28. from mindspore.common import dtype as mstype
  29. from mindspore.common import set_seed
  30. from src.lr_generator import get_lr
  31. from src.Xception import xception
  32. from src.config import config
  33. from src.dataset import create_dataset
  34. from src.loss import CrossEntropySmooth
  35. set_seed(1)
  36. class Monitor(Callback):
  37. """
  38. Monitor loss and time.
  39. Args:
  40. lr_init (numpy array): train lr
  41. Returns:
  42. None
  43. Examples:
  44. >>> Monitor(lr_init=Tensor([0.05]*100).asnumpy())
  45. """
  46. def __init__(self, lr_init=None):
  47. super(Monitor, self).__init__()
  48. self.lr_init = lr_init
  49. self.lr_init_len = len(lr_init)
  50. def epoch_begin(self, run_context):
  51. self.losses = []
  52. self.epoch_time = time.time()
  53. def epoch_end(self, run_context):
  54. cb_params = run_context.original_args()
  55. epoch_mseconds = (time.time() - self.epoch_time) * 1000
  56. per_step_mseconds = epoch_mseconds / cb_params.batch_num
  57. print("epoch time: {:5.3f}, per step time: {:5.3f}, avg loss: {:5.3f}".format(epoch_mseconds,
  58. per_step_mseconds,
  59. np.mean(self.losses)))
  60. def step_begin(self, run_context):
  61. self.step_time = time.time()
  62. def step_end(self, run_context):
  63. cb_params = run_context.original_args()
  64. step_mseconds = (time.time() - self.step_time) * 1000
  65. step_loss = cb_params.net_outputs
  66. if isinstance(step_loss, (tuple, list)) and isinstance(step_loss[0], Tensor):
  67. step_loss = step_loss[0]
  68. if isinstance(step_loss, Tensor):
  69. step_loss = np.mean(step_loss.asnumpy())
  70. self.losses.append(step_loss)
  71. cur_step_in_epoch = (cb_params.cur_step_num - 1) % cb_params.batch_num
  72. print("epoch: [{:3d}/{:3d}], step:[{:5d}/{:5d}], loss:[{:5.3f}/{:5.3f}], time:[{:5.3f}], lr:[{:5.3f}]".format(
  73. cb_params.cur_epoch_num - 1 + config.finish_epoch, cb_params.epoch_num + config.finish_epoch,
  74. cur_step_in_epoch, cb_params.batch_num, step_loss,
  75. np.mean(self.losses), step_mseconds, self.lr_init[cb_params.cur_step_num - 1]))
  76. if __name__ == '__main__':
  77. parser = argparse.ArgumentParser(description='image classification training')
  78. parser.add_argument('--is_distributed', action='store_true', default=False, help='distributed training')
  79. parser.add_argument('--device_target', type=str, default='Ascend', help='run platform')
  80. parser.add_argument('--dataset_path', type=str, default=None, help='dataset path')
  81. parser.add_argument('--resume', type=str, default='', help='resume training with existed checkpoint')
  82. args_opt = parser.parse_args()
  83. if args_opt.device_target == "Ascend":
  84. #train on Ascend
  85. context.set_context(mode=context.GRAPH_MODE, device_target='Ascend', save_graphs=False)
  86. # init distributed
  87. if args_opt.is_distributed:
  88. if os.getenv('DEVICE_ID', "not_set").isdigit():
  89. context.set_context(device_id=int(os.getenv('DEVICE_ID')))
  90. init()
  91. rank = get_rank()
  92. group_size = get_group_size()
  93. parallel_mode = ParallelMode.DATA_PARALLEL
  94. context.set_auto_parallel_context(parallel_mode=parallel_mode, device_num=group_size, gradients_mean=True)
  95. else:
  96. rank = 0
  97. group_size = 1
  98. context.set_context(device_id=0)
  99. # define network
  100. net = xception(class_num=config.class_num)
  101. net.to_float(mstype.float16)
  102. # define loss
  103. if not config.use_label_smooth:
  104. config.label_smooth_factor = 0.0
  105. loss = CrossEntropySmooth(smooth_factor=config.label_smooth_factor, num_classes=config.class_num)
  106. # define dataset
  107. dataset = create_dataset(args_opt.dataset_path, do_train=True, batch_size=config.batch_size,
  108. device_num=group_size, rank=rank)
  109. step_size = dataset.get_dataset_size()
  110. # resume
  111. if args_opt.resume:
  112. ckpt = load_checkpoint(args_opt.resume)
  113. load_param_into_net(net, ckpt)
  114. # get learning rate
  115. loss_scale = FixedLossScaleManager(config.loss_scale, drop_overflow_update=False)
  116. lr = Tensor(get_lr(lr_init=config.lr_init,
  117. lr_end=config.lr_end,
  118. lr_max=config.lr_max,
  119. warmup_epochs=config.warmup_epochs,
  120. total_epochs=config.epoch_size,
  121. steps_per_epoch=step_size,
  122. lr_decay_mode=config.lr_decay_mode))
  123. # define optimization
  124. opt = Momentum(net.trainable_params(), lr, config.momentum, config.weight_decay, config.loss_scale)
  125. # define model
  126. model = Model(net, loss_fn=loss, optimizer=opt, loss_scale_manager=loss_scale, metrics={'acc'},
  127. amp_level='O3', keep_batchnorm_fp32=True)
  128. # define callbacks
  129. cb = [Monitor(lr_init=lr.asnumpy())]
  130. if config.save_checkpoint:
  131. save_ckpt_path = os.path.join(config.save_checkpoint_path, 'model_' + str(rank) + '/')
  132. config_ck = CheckpointConfig(save_checkpoint_steps=config.save_checkpoint_epochs * step_size,
  133. keep_checkpoint_max=config.keep_checkpoint_max)
  134. ckpt_cb = ModelCheckpoint(f"Xception-rank{rank}", directory=save_ckpt_path, config=config_ck)
  135. # begin train
  136. if args_opt.is_distributed:
  137. if rank == 0:
  138. cb += [ckpt_cb]
  139. model.train(config.epoch_size - config.finish_epoch, dataset, callbacks=cb, dataset_sink_mode=False)
  140. else:
  141. cb += [ckpt_cb]
  142. model.train(config.epoch_size - config.finish_epoch, dataset, callbacks=cb, dataset_sink_mode=False)
  143. print("train success")
  144. else:
  145. raise ValueError("Unsupported device_target.")