You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

run_pretrain.py 10 kB

5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171
  1. # Copyright 2020 Huawei Technologies Co., Ltd
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. # ============================================================================
  15. """
  16. #################pre_train bert example on zh-wiki########################
  17. python run_pretrain.py
  18. """
  19. import os
  20. import argparse
  21. import numpy
  22. import mindspore.communication.management as D
  23. import mindspore.common.dtype as mstype
  24. from mindspore import context
  25. from mindspore.train.model import Model
  26. from mindspore.train.parallel_utils import ParallelMode
  27. from mindspore.nn.wrap.loss_scale import DynamicLossScaleUpdateCell
  28. from mindspore.train.callback import Callback, ModelCheckpoint, CheckpointConfig, TimeMonitor
  29. from mindspore.train.serialization import load_checkpoint, load_param_into_net
  30. from mindspore.nn.optim import Lamb, Momentum, AdamWeightDecayDynamicLR
  31. from mindspore import log as logger
  32. from src import BertNetworkWithLoss, BertTrainOneStepCell, BertTrainOneStepWithLossScaleCell
  33. from src.dataset import create_bert_dataset
  34. from src.config import cfg, bert_net_cfg
  35. _current_dir = os.path.dirname(os.path.realpath(__file__))
  36. class LossCallBack(Callback):
  37. """
  38. Monitor the loss in training.
  39. If the loss in NAN or INF terminating training.
  40. Note:
  41. if per_print_times is 0 do not print loss.
  42. Args:
  43. per_print_times (int): Print loss every times. Default: 1.
  44. """
  45. def __init__(self, per_print_times=1):
  46. super(LossCallBack, self).__init__()
  47. if not isinstance(per_print_times, int) or per_print_times < 0:
  48. raise ValueError("print_step must be int and >= 0")
  49. self._per_print_times = per_print_times
  50. def step_end(self, run_context):
  51. cb_params = run_context.original_args()
  52. print("epoch: {}, step: {}, outputs are {}".format(cb_params.cur_epoch_num, cb_params.cur_step_num,
  53. str(cb_params.net_outputs)))
  54. def run_pretrain():
  55. """pre-train bert_clue"""
  56. parser = argparse.ArgumentParser(description='bert pre_training')
  57. parser.add_argument('--device_target', type=str, default='Ascend', choices=['Ascend', 'GPU'],
  58. help='device where the code will be implemented. (Default: Ascend)')
  59. parser.add_argument("--distribute", type=str, default="false", help="Run distribute, default is false.")
  60. parser.add_argument("--epoch_size", type=int, default="1", help="Epoch size, default is 1.")
  61. parser.add_argument("--device_id", type=int, default=0, help="Device id, default is 0.")
  62. parser.add_argument("--device_num", type=int, default=1, help="Use device nums, default is 1.")
  63. parser.add_argument("--enable_save_ckpt", type=str, default="true", help="Enable save checkpoint, default is true.")
  64. parser.add_argument("--enable_lossscale", type=str, default="true", help="Use lossscale or not, default is not.")
  65. parser.add_argument("--do_shuffle", type=str, default="true", help="Enable shuffle for dataset, default is true.")
  66. parser.add_argument("--enable_data_sink", type=str, default="true", help="Enable data sink, default is true.")
  67. parser.add_argument("--data_sink_steps", type=int, default="1", help="Sink steps for each epoch, default is 1.")
  68. parser.add_argument("--save_checkpoint_path", type=str, default="", help="Save checkpoint path")
  69. parser.add_argument("--load_checkpoint_path", type=str, default="", help="Load checkpoint file path")
  70. parser.add_argument("--save_checkpoint_steps", type=int, default=1000, help="Save checkpoint steps, "
  71. "default is 1000.")
  72. parser.add_argument("--train_steps", type=int, default=-1, help="Training Steps, default is -1, "
  73. "meaning run all steps according to epoch number.")
  74. parser.add_argument("--save_checkpoint_num", type=int, default=1, help="Save checkpoint numbers, default is 1.")
  75. parser.add_argument("--data_dir", type=str, default="", help="Data path, it is better to use absolute path")
  76. parser.add_argument("--schema_dir", type=str, default="", help="Schema path, it is better to use absolute path")
  77. args_opt = parser.parse_args()
  78. context.set_context(mode=context.GRAPH_MODE, device_target=args_opt.device_target, device_id=args_opt.device_id)
  79. context.set_context(reserve_class_name_in_scope=False)
  80. ckpt_save_dir = args_opt.save_checkpoint_path
  81. if args_opt.distribute == "true":
  82. if args_opt.device_target == 'Ascend':
  83. D.init('hccl')
  84. device_num = args_opt.device_num
  85. rank = args_opt.device_id % device_num
  86. else:
  87. D.init('nccl')
  88. device_num = D.get_group_size()
  89. rank = D.get_rank()
  90. ckpt_save_dir = args_opt.save_checkpoint_path + 'ckpt_' + str(rank) + '/'
  91. context.reset_auto_parallel_context()
  92. context.set_auto_parallel_context(parallel_mode=ParallelMode.DATA_PARALLEL, mirror_mean=True,
  93. device_num=device_num)
  94. from mindspore.parallel._auto_parallel_context import auto_parallel_context
  95. if bert_net_cfg.num_hidden_layers == 12:
  96. if bert_net_cfg.use_relative_positions:
  97. auto_parallel_context().set_all_reduce_fusion_split_indices([29, 58, 87, 116, 145, 174, 203, 217])
  98. else:
  99. auto_parallel_context().set_all_reduce_fusion_split_indices([28, 55, 82, 109, 136, 163, 190, 205])
  100. elif bert_net_cfg.num_hidden_layers == 24:
  101. if bert_net_cfg.use_relative_positions:
  102. auto_parallel_context().set_all_reduce_fusion_split_indices([30, 90, 150, 210, 270, 330, 390, 421])
  103. else:
  104. auto_parallel_context().set_all_reduce_fusion_split_indices([38, 93, 148, 203, 258, 313, 368, 397])
  105. else:
  106. rank = 0
  107. device_num = 1
  108. if args_opt.device_target == 'GPU' and bert_net_cfg.compute_type != mstype.float32:
  109. logger.warning('Gpu only support fp32 temporarily, run with fp32.')
  110. bert_net_cfg.compute_type = mstype.float32
  111. ds, new_repeat_count = create_bert_dataset(args_opt.epoch_size, device_num, rank, args_opt.do_shuffle,
  112. args_opt.enable_data_sink, args_opt.data_sink_steps,
  113. args_opt.data_dir, args_opt.schema_dir)
  114. if args_opt.train_steps > 0:
  115. new_repeat_count = min(new_repeat_count, args_opt.train_steps // args_opt.data_sink_steps)
  116. netwithloss = BertNetworkWithLoss(bert_net_cfg, True)
  117. if cfg.optimizer == 'Lamb':
  118. optimizer = Lamb(netwithloss.trainable_params(), decay_steps=ds.get_dataset_size() * new_repeat_count,
  119. start_learning_rate=cfg.Lamb.start_learning_rate, end_learning_rate=cfg.Lamb.end_learning_rate,
  120. power=cfg.Lamb.power, warmup_steps=cfg.Lamb.warmup_steps, weight_decay=cfg.Lamb.weight_decay,
  121. eps=cfg.Lamb.eps)
  122. elif cfg.optimizer == 'Momentum':
  123. optimizer = Momentum(netwithloss.trainable_params(), learning_rate=cfg.Momentum.learning_rate,
  124. momentum=cfg.Momentum.momentum)
  125. elif cfg.optimizer == 'AdamWeightDecayDynamicLR':
  126. optimizer = AdamWeightDecayDynamicLR(netwithloss.trainable_params(),
  127. decay_steps=ds.get_dataset_size() * new_repeat_count,
  128. learning_rate=cfg.AdamWeightDecayDynamicLR.learning_rate,
  129. end_learning_rate=cfg.AdamWeightDecayDynamicLR.end_learning_rate,
  130. power=cfg.AdamWeightDecayDynamicLR.power,
  131. weight_decay=cfg.AdamWeightDecayDynamicLR.weight_decay,
  132. eps=cfg.AdamWeightDecayDynamicLR.eps,
  133. warmup_steps=cfg.AdamWeightDecayDynamicLR.warmup_steps)
  134. else:
  135. raise ValueError("Don't support optimizer {}, only support [Lamb, Momentum, AdamWeightDecayDynamicLR]".
  136. format(cfg.optimizer))
  137. callback = [TimeMonitor(ds.get_dataset_size()), LossCallBack()]
  138. if args_opt.enable_save_ckpt == "true":
  139. config_ck = CheckpointConfig(save_checkpoint_steps=args_opt.save_checkpoint_steps,
  140. keep_checkpoint_max=args_opt.save_checkpoint_num)
  141. ckpoint_cb = ModelCheckpoint(prefix='checkpoint_bert', directory=ckpt_save_dir, config=config_ck)
  142. callback.append(ckpoint_cb)
  143. if args_opt.load_checkpoint_path:
  144. param_dict = load_checkpoint(args_opt.load_checkpoint_path)
  145. load_param_into_net(netwithloss, param_dict)
  146. if args_opt.enable_lossscale == "true":
  147. update_cell = DynamicLossScaleUpdateCell(loss_scale_value=cfg.loss_scale_value,
  148. scale_factor=cfg.scale_factor,
  149. scale_window=cfg.scale_window)
  150. netwithgrads = BertTrainOneStepWithLossScaleCell(netwithloss, optimizer=optimizer,
  151. scale_update_cell=update_cell)
  152. else:
  153. netwithgrads = BertTrainOneStepCell(netwithloss, optimizer=optimizer)
  154. model = Model(netwithgrads)
  155. model.train(new_repeat_count, ds, callbacks=callback, dataset_sink_mode=(args_opt.enable_data_sink == "true"))
  156. if __name__ == '__main__':
  157. numpy.random.seed(0)
  158. run_pretrain()