|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135 |
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
- """Transformer evaluation script."""
-
- import os
- import numpy as np
-
- import mindspore.nn as nn
- import mindspore.common.dtype as mstype
- from mindspore.common.parameter import Parameter
- from mindspore.common.tensor import Tensor
- from mindspore.train.model import Model
- from mindspore.train.serialization import load_checkpoint, load_param_into_net
- import mindspore.dataset.engine as de
- import mindspore.dataset.transforms.c_transforms as deC
- from mindspore import context
-
- from src.transformer_model import TransformerModel
- from src.eval_config import cfg, transformer_net_cfg
-
- def load_test_data(batch_size=1, data_file=None):
- """
- Load test dataset
- """
- ds = de.MindDataset(data_file,
- columns_list=["source_eos_ids", "source_eos_mask",
- "target_sos_ids", "target_sos_mask",
- "target_eos_ids", "target_eos_mask"],
- shuffle=False)
- type_cast_op = deC.TypeCast(mstype.int32)
- ds = ds.map(input_columns="source_eos_ids", operations=type_cast_op)
- ds = ds.map(input_columns="source_eos_mask", operations=type_cast_op)
- ds = ds.map(input_columns="target_sos_ids", operations=type_cast_op)
- ds = ds.map(input_columns="target_sos_mask", operations=type_cast_op)
- ds = ds.map(input_columns="target_eos_ids", operations=type_cast_op)
- ds = ds.map(input_columns="target_eos_mask", operations=type_cast_op)
- # apply batch operations
- ds = ds.batch(batch_size, drop_remainder=True)
- ds.channel_name = 'transformer'
- return ds
-
- class TransformerInferCell(nn.Cell):
- """
- Encapsulation class of transformer network infer.
- """
- def __init__(self, network):
- super(TransformerInferCell, self).__init__(auto_prefix=False)
- self.network = network
-
- def construct(self,
- source_ids,
- source_mask):
- predicted_ids = self.network(source_ids, source_mask)
- return predicted_ids
-
- def load_weights(model_path):
- """
- Load checkpoint as parameter dict, support both npz file and mindspore checkpoint file.
- """
- if model_path.endswith(".npz"):
- ms_ckpt = np.load(model_path)
- is_npz = True
- else:
- ms_ckpt = load_checkpoint(model_path)
- is_npz = False
-
- weights = {}
- for msname in ms_ckpt:
- infer_name = msname
- if "tfm_decoder" in msname:
- infer_name = "tfm_decoder.decoder." + infer_name
- if is_npz:
- weights[infer_name] = ms_ckpt[msname]
- else:
- weights[infer_name] = ms_ckpt[msname].data.asnumpy()
- weights["tfm_decoder.decoder.tfm_embedding_lookup.embedding_table"] = \
- weights["tfm_embedding_lookup.embedding_table"]
-
- parameter_dict = {}
- for name in weights:
- parameter_dict[name] = Parameter(Tensor(weights[name]), name=name)
- return parameter_dict
-
- def run_transformer_eval():
- """
- Transformer evaluation.
- """
- device_id = int(os.getenv('DEVICE_ID'))
- context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", reserve_class_name_in_scope=False,
- device_id=device_id)
-
- dataset = load_test_data(batch_size=transformer_net_cfg.batch_size, data_file=cfg.data_file)
- tfm_model = TransformerModel(config=transformer_net_cfg, is_training=False, use_one_hot_embeddings=False)
-
- parameter_dict = load_weights(cfg.model_file)
- load_param_into_net(tfm_model, parameter_dict)
-
- tfm_infer = TransformerInferCell(tfm_model)
- model = Model(tfm_infer)
-
- predictions = []
- source_sents = []
- target_sents = []
- for batch in dataset.create_dict_iterator():
- source_sents.append(batch["source_eos_ids"])
- target_sents.append(batch["target_eos_ids"])
- source_ids = Tensor(batch["source_eos_ids"], mstype.int32)
- source_mask = Tensor(batch["source_eos_mask"], mstype.int32)
- predicted_ids = model.predict(source_ids, source_mask)
- predictions.append(predicted_ids.asnumpy())
-
- # decode and write to file
- f = open(cfg.output_file, 'w')
- for batch_out in predictions:
- for i in range(transformer_net_cfg.batch_size):
- if batch_out.ndim == 3:
- batch_out = batch_out[:, 0]
- token_ids = [str(x) for x in batch_out[i].tolist()]
- f.write(" ".join(token_ids) + "\n")
- f.close()
-
- if __name__ == "__main__":
- run_transformer_eval()
|