|
1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253 |
- # Copyright 2019 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0(the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http: // www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # == == == == == == == == == == == == == == == == == == == == == == == == == == == == == == == == == == == == == ==
-
- import numpy as np
- import pytest
-
- import mindspore.context as context
- import mindspore.nn as nn
- from mindspore import Tensor
- from mindspore.common.api import ms_function
- from mindspore.common.initializer import initializer
- from mindspore.common.parameter import Parameter
- from mindspore.ops import operations as P
-
- x = np.random.uniform(-2, 2, (2, 3, 4, 4)).astype(np.float32)
- y = np.random.uniform(-2, 2, (1, 1, 1, 1)).astype(np.float32)
-
- context.set_context(device_target='CPU')
-
-
- class Net(nn.Cell):
- def __init__(self):
- super(Net, self).__init__()
- self.mul = P.Mul()
- self.x = Parameter(initializer(Tensor(x), x.shape), name='x3')
- self.y = Parameter(initializer(Tensor(y), y.shape), name='y3')
-
- @ms_function
- def construct(self):
- return self.mul(self.x, self.y)
-
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_cpu
- @pytest.mark.env_onecard
- def test_Mul():
- mul = Net()
- output = mul()
- print(x)
- print(y)
- print(output)
|